Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 4, 273 - 281
https://doi.org/10.17694/bajece.1426277

Abstract

References

  • [1] M.I. Khattak, A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, “Elliptical slot circular patch antenna array with dual-band behavior for future 5G mobile communication networks”. Progress In Electromagnetics Research C, vol. 89, pp. 133-147, 2019.
  • [2] O.S. Zakariyya, B.O. Sadiq, O.A. Abdulrahman, and A.F. Salami, “Modified edge fed Sierpinski carpet miniaturized microstrip Patch antenna”, Nigerian Journal of Technology, vol. 35, no. 3, pp. 637-641, 2016.
  • [3] M. Rahman, M.N. Jahromi, S.S. Mirjavadi, and A.M. Hamouda, “Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications”, Electronics, vol. 8, no. 8, 2019.
  • [4] D.T.T. Tu, N.G. Thang, N.T. Ngoc, N.T.B. Phuong, and V. Van Yem, “28/38 GHz dual-band MIMO antenna with low mutual coupling using novel round patch EBG cell for 5G applications”. In 2017 International Conference on Advanced Technologies for Communications, 18-20 October, EEE, Quy Nhon, Vietnam, 2017, pp. 64-69.
  • [5] M.N. Hasan, S. Bashir, and S. Chu, “Dual band omnidirectional millimeter wave antenna for 5G communications”, Journal of Electromagnetic Waves and Applications, vol. 33, no. 12, pp. 1581-1590, 2019.
  • [6] H.M. Marzouk, M.I. Ahmed, and A.H.A. Shaalan, “Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications”, Progress In Electromagnetics Research C, vol. 93, pp. 103-117, 2019.
  • [7] M. Shuhrawardy, M.H.M. Chowdhury, and R. Azim, “A four-element compact wideband MIMO antenna for 5G applications”. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 07-09 February, Cox'sBazar, Bangladesh, 2019, pp. 1-5.
  • [8] D.A. Sehrai, M. Abdullah, A. Altaf, S.H. Kiani, F. Muhammad, M. Tufail, and S. Rahman, “A novel high gain wideband MIMO antenna for 5G millimeter wave applications”, Electronics, vol. 9, no. 6, pp. 1-13, (2020).
  • [9] A. Desai, C.D. Bui, J. Patel, T. Upadhyaya, G. Byun, and T.K. Nguyen, “Compact wideband four element optically transparent MIMO antenna for mm-wave 5G applications”, IEEE Access, vol. 8, 194206-194217, 2020.
  • [10] M.L. Hakim, M.J. Uddin, and M.J. Hoque, “28/38 GHz Dual-Band Microstrip Patch Antenna with DGS and Stub-Slot Configurations and Its 2× 2 MIMO Antenna Design for 5G Wireless Communication”, 2020 IEEE Region 10 Symposium (TENSYMP) 05-07 June, Dhaka, Bangladesh, 2020, pp. 56-59.
  • [11] S. Saleem, S. Kumari, D. Yadav, and D. Bhatnagar, “Compact millimeter-wave MIMO (multiple-input multiple-output) antenna for 5G Applications”, In 2021 IEEE Indian Conference on Antennas and Propagation (InCAP) 13-16 December, IEEE, Jaipur, Rajasthan, India, 2021, pp. 1035-1038.
  • [12] K. Raheel, A. Altaf, A. Waheed, S.H. Kiani, D.A. Sehrai, F. Tubbal, and R. Raad, “E-shaped H-slotted dual band mmWave antenna for 5G technology”, Electronics, vol. 10, no. 9, pp. 1-10, 2021.
  • [13] A.R. Sabek, A.A. Ibrahim, and W.A. Ali, “Dual-band millimeter wave microstrip patch antenna with stubresonators for 28/38 GHz applications”, In Journal of Physics: Conference Series, vol. 2128, no. 1, 2021.
  • [14] S. Chaudhary, and A. Kansal, “Compact high gain 28, 38 GHz antenna for 5G communication”, International Journal of Electronics, vol. 110, no. 6, pp. 1028-1048. 2022.
  • [15] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project”, IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, 2014.
  • [16] 3rd Generation Partnership Project (3GPP). “Technical Specification Group Radio Access Network; NR; Frequencies and Operating Bands.” 3GPP TS 38.101-1.
  • [17] FCC, “America’s 5G future,” Federal Commun. Commission. https://www.fcc.gov/5G (accessed March 20, 2024).
  • [18] M. L. Hakim, M. T. Islam and T. Alam, “Incident Angle Stable Broadband Conformal mm-Wave FSS for 5G (n257, n258, n260, and n261) Band EMI Shielding Application,” IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 2, pp. 488-492, Feb. 2024, doi: 10.1109/LAWP.2023.3326868.
  • [19] S. Rangan, T.S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges”, Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, 2014.
  • [20] N. Al-Falahy, and O.Y. Alani, Millimetre wave frequency band as a candidate spectrum for 5G network architecture: A survey, Physical Communication, vol. 32, pp. 120-144, 2019.
  • [21] C.A. Balanis, “Antenna Theory: Analysis and Design”, Willey-Inter Science, (2005).
  • [22] CST Studio Suite, https://www.3ds.com/products/simulia/cst-studio-suite, (accessed September 29, 2024).
  • [23] J.J. Golezani, M. Abbak, I. Akduman I. “Modified directional wide band printed monopole antenna for use in radar and microwave imaging applications”, Prog Electromagn Res Lett. vol.33, pp.119–129, 2012. doi:10.2528/PIERL1205280
  • [24] M.H. Bah, J. Hong, DA. Jamro, “Ground slotted monopole antenna design for microwave breast cancer detection based on time reversal MUSIC”, Progress in Electromagnetics Research C, vol. 59, pp.117–126, 2015. doi:10.2528/PIERC1508290.
  • [25] Z. Wani, D. Kumar, “Dual-band-notched antenna for UWB MIMO applications”, Int J Microwave Wireless Technolog. vol.35, pp.1–6, 2015.
  • [26] M.T. Islam, M.Z Mahmud, N. Misran, J. Takada, M. Cho, “Microwave breast phantom measurement system with compact side slotted directional antenna”, IEEE Access, vol.5, pp.5321-5330, 2017.
  • [27] S. Sarkar, A.D. Majumdar, S. Mondal, S. Biswas, D. Sarkar, P.P. Sarkar, “Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane”, Microwave and Optical Technology Letter, vol. 53, no. 1, pp.111–115, 2011. doi:10.1002/mop.
  • [28] M.A. Ullah, F.B. Ashraf, T. Alam, M.S. Alam, S. Kibria, M.T. Islam, “A compact triangular shaped microstrip patch antenna with triangular slotted ground for UWB application”, Proceedings of the International Conference on Innovations in Science, Engineering and Technology (ICISET); Dhaka, Bangladesh, 2016.
  • [29] I. Ganesan, I. Paulkani, “Design of ultra wideband circular slot antenna for emergency communication applications”, e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 6, 2023.
  • [30] A.R. Celik, M.B. Kurt, “Development of an ultrawideband, stable and high-directive monopole disc antenna for radar-based microwave imaging of breast cancer”, Journal of Microwave Power and Electromagnetic Energy, vol.52, no.2, pp.75-93, 2018, DOI:10.1080/08327823.2018.1458692

A Novel Dual-Band Four Port MIMO Antenna Design for 28/38 GHz Millimeter-Wave 5G Applications

Year 2024, Volume: 12 Issue: 4, 273 - 281
https://doi.org/10.17694/bajece.1426277

Abstract

This paper introduces a novel dual-band Multiple-Input Multiple-Output (MIMO) antenna specifically crafted for 5G millimeter-wave communication systems. The antenna is designed to operate within the frequency spectrum of 26 to 31 GHz and 34.5 to 40 GHz. Notably, at 28 GHz, the antenna attains an impressive gain of 10.6 dBi, coupled with an efficiency exceeding 70%. Meanwhile, at 38 GHz, the gain remains substantial at 6.65 dBi, with an efficiency of 50%. Simulation results indicate an average isolation of approximately -30 dB between antenna elements. The diversity gain is nearly 10 dB, and the error-correcting code measures less than 1 × 10-6, highlighting superior performance compared to prior antenna designs. These robust dual-band MIMO antenna performance metrics make it a highly promising solution for millimeter-wave 5G applications.

References

  • [1] M.I. Khattak, A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, “Elliptical slot circular patch antenna array with dual-band behavior for future 5G mobile communication networks”. Progress In Electromagnetics Research C, vol. 89, pp. 133-147, 2019.
  • [2] O.S. Zakariyya, B.O. Sadiq, O.A. Abdulrahman, and A.F. Salami, “Modified edge fed Sierpinski carpet miniaturized microstrip Patch antenna”, Nigerian Journal of Technology, vol. 35, no. 3, pp. 637-641, 2016.
  • [3] M. Rahman, M.N. Jahromi, S.S. Mirjavadi, and A.M. Hamouda, “Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications”, Electronics, vol. 8, no. 8, 2019.
  • [4] D.T.T. Tu, N.G. Thang, N.T. Ngoc, N.T.B. Phuong, and V. Van Yem, “28/38 GHz dual-band MIMO antenna with low mutual coupling using novel round patch EBG cell for 5G applications”. In 2017 International Conference on Advanced Technologies for Communications, 18-20 October, EEE, Quy Nhon, Vietnam, 2017, pp. 64-69.
  • [5] M.N. Hasan, S. Bashir, and S. Chu, “Dual band omnidirectional millimeter wave antenna for 5G communications”, Journal of Electromagnetic Waves and Applications, vol. 33, no. 12, pp. 1581-1590, 2019.
  • [6] H.M. Marzouk, M.I. Ahmed, and A.H.A. Shaalan, “Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications”, Progress In Electromagnetics Research C, vol. 93, pp. 103-117, 2019.
  • [7] M. Shuhrawardy, M.H.M. Chowdhury, and R. Azim, “A four-element compact wideband MIMO antenna for 5G applications”. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 07-09 February, Cox'sBazar, Bangladesh, 2019, pp. 1-5.
  • [8] D.A. Sehrai, M. Abdullah, A. Altaf, S.H. Kiani, F. Muhammad, M. Tufail, and S. Rahman, “A novel high gain wideband MIMO antenna for 5G millimeter wave applications”, Electronics, vol. 9, no. 6, pp. 1-13, (2020).
  • [9] A. Desai, C.D. Bui, J. Patel, T. Upadhyaya, G. Byun, and T.K. Nguyen, “Compact wideband four element optically transparent MIMO antenna for mm-wave 5G applications”, IEEE Access, vol. 8, 194206-194217, 2020.
  • [10] M.L. Hakim, M.J. Uddin, and M.J. Hoque, “28/38 GHz Dual-Band Microstrip Patch Antenna with DGS and Stub-Slot Configurations and Its 2× 2 MIMO Antenna Design for 5G Wireless Communication”, 2020 IEEE Region 10 Symposium (TENSYMP) 05-07 June, Dhaka, Bangladesh, 2020, pp. 56-59.
  • [11] S. Saleem, S. Kumari, D. Yadav, and D. Bhatnagar, “Compact millimeter-wave MIMO (multiple-input multiple-output) antenna for 5G Applications”, In 2021 IEEE Indian Conference on Antennas and Propagation (InCAP) 13-16 December, IEEE, Jaipur, Rajasthan, India, 2021, pp. 1035-1038.
  • [12] K. Raheel, A. Altaf, A. Waheed, S.H. Kiani, D.A. Sehrai, F. Tubbal, and R. Raad, “E-shaped H-slotted dual band mmWave antenna for 5G technology”, Electronics, vol. 10, no. 9, pp. 1-10, 2021.
  • [13] A.R. Sabek, A.A. Ibrahim, and W.A. Ali, “Dual-band millimeter wave microstrip patch antenna with stubresonators for 28/38 GHz applications”, In Journal of Physics: Conference Series, vol. 2128, no. 1, 2021.
  • [14] S. Chaudhary, and A. Kansal, “Compact high gain 28, 38 GHz antenna for 5G communication”, International Journal of Electronics, vol. 110, no. 6, pp. 1028-1048. 2022.
  • [15] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project”, IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, 2014.
  • [16] 3rd Generation Partnership Project (3GPP). “Technical Specification Group Radio Access Network; NR; Frequencies and Operating Bands.” 3GPP TS 38.101-1.
  • [17] FCC, “America’s 5G future,” Federal Commun. Commission. https://www.fcc.gov/5G (accessed March 20, 2024).
  • [18] M. L. Hakim, M. T. Islam and T. Alam, “Incident Angle Stable Broadband Conformal mm-Wave FSS for 5G (n257, n258, n260, and n261) Band EMI Shielding Application,” IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 2, pp. 488-492, Feb. 2024, doi: 10.1109/LAWP.2023.3326868.
  • [19] S. Rangan, T.S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges”, Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, 2014.
  • [20] N. Al-Falahy, and O.Y. Alani, Millimetre wave frequency band as a candidate spectrum for 5G network architecture: A survey, Physical Communication, vol. 32, pp. 120-144, 2019.
  • [21] C.A. Balanis, “Antenna Theory: Analysis and Design”, Willey-Inter Science, (2005).
  • [22] CST Studio Suite, https://www.3ds.com/products/simulia/cst-studio-suite, (accessed September 29, 2024).
  • [23] J.J. Golezani, M. Abbak, I. Akduman I. “Modified directional wide band printed monopole antenna for use in radar and microwave imaging applications”, Prog Electromagn Res Lett. vol.33, pp.119–129, 2012. doi:10.2528/PIERL1205280
  • [24] M.H. Bah, J. Hong, DA. Jamro, “Ground slotted monopole antenna design for microwave breast cancer detection based on time reversal MUSIC”, Progress in Electromagnetics Research C, vol. 59, pp.117–126, 2015. doi:10.2528/PIERC1508290.
  • [25] Z. Wani, D. Kumar, “Dual-band-notched antenna for UWB MIMO applications”, Int J Microwave Wireless Technolog. vol.35, pp.1–6, 2015.
  • [26] M.T. Islam, M.Z Mahmud, N. Misran, J. Takada, M. Cho, “Microwave breast phantom measurement system with compact side slotted directional antenna”, IEEE Access, vol.5, pp.5321-5330, 2017.
  • [27] S. Sarkar, A.D. Majumdar, S. Mondal, S. Biswas, D. Sarkar, P.P. Sarkar, “Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane”, Microwave and Optical Technology Letter, vol. 53, no. 1, pp.111–115, 2011. doi:10.1002/mop.
  • [28] M.A. Ullah, F.B. Ashraf, T. Alam, M.S. Alam, S. Kibria, M.T. Islam, “A compact triangular shaped microstrip patch antenna with triangular slotted ground for UWB application”, Proceedings of the International Conference on Innovations in Science, Engineering and Technology (ICISET); Dhaka, Bangladesh, 2016.
  • [29] I. Ganesan, I. Paulkani, “Design of ultra wideband circular slot antenna for emergency communication applications”, e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 6, 2023.
  • [30] A.R. Celik, M.B. Kurt, “Development of an ultrawideband, stable and high-directive monopole disc antenna for radar-based microwave imaging of breast cancer”, Journal of Microwave Power and Electromagnetic Energy, vol.52, no.2, pp.75-93, 2018, DOI:10.1080/08327823.2018.1458692
There are 30 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

Nermin Hamdan 0000-0002-5347-2832

Çetin Kurnaz 0000-0003-3436-899X

Early Pub Date January 13, 2025
Publication Date
Submission Date January 26, 2024
Acceptance Date January 2, 2025
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Hamdan, N., & Kurnaz, Ç. (2025). A Novel Dual-Band Four Port MIMO Antenna Design for 28/38 GHz Millimeter-Wave 5G Applications. Balkan Journal of Electrical and Computer Engineering, 12(4), 273-281. https://doi.org/10.17694/bajece.1426277

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı