Year 2025,
Volume: 13 Issue: 1, 27 - 38
Doygun Demirol
,
Resul Daş
,
Mehmet Özdem
,
Ceren Nur Cansel
,
Davut Hanbay
References
- [1] N. M. Adams, “Perspectives on data mining,” International Journal of
Market Research, vol. 52, no. 1, 2010.
- [2] D. Talia, “Clouds for scalable big data analytics,” Computer, vol. 46,
no. 5, pp. 98–101, 2013.
- [3] D. Demirol, R. Das, and D. Hanbay, “B¨uy¨uk veri ¨uzerine perspektif bir
bakıs¸,” in 2019 International Artificial Intelligence and Data Processing
Symposium (IDAP), 2019, pp. 1–9.
- [4] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “HadoopDB: An architectural hybrid of mapreduce and
DBMS technologies for analytical workloads,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 922–933, aug 2009.
- [5] V. Subramaniyaswamy, V. Vijayakumar, R. Logesh, and V. Indragandhi,
“Unstructured data analysis on big data using map reduce,” Procedia
Computer Science, vol. 50, pp. 456–465, 2015.
- [6] S. F. Oliveira, K. F¨urlinger, and D. Kranzlm¨uller, “Trends in computation,
communication and storage and the consequences for data-intensive
science,” in Proceedings of the 14th IEEE International Conference on
High Performance Computing and Communications, HPCC-2012 - 9th
IEEE International Conference on Embedded Software and Systems,
ICESS-2012. IEEE, jun 2012, pp. 572–579.
- [7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems, vol. 26, no. 2, pp. 1–26, 2008.
- [8] L. George, HBase: The Definitive Guide. O’Reilly Media, Inc., 2016.
- [9] A. Lakshman and P. Malik, “Cassandra - a decentralized structured
storage system,” Operating Systems Review (ACM), vol. 44, pp. 35–40,
2010.
- [10] V. Abramova and J. Bernardino, “Nosql databases: Mongodb vs cassandra,”
in C3S2E ’13: Proceedings of the International C* Conference on
Computer Science and Software Engineering, 2013, pp. 14–22.
- [11] M. Armbrust, A. Fox, D. Patterson, N. Lanham, B. Trushkowsky,
J. Trutna, and H. Oh, “Scads: Scale-independent storage for social
computing applications,” in CIDR 2009 - 4th Biennial Conference on
Innovative Data Systems Research, January 2009.
- [12] K. Pattnaik and B. Mishra, “Introduction to big data analysis,” in
Techniques and Environments for Big Data Analysis, 2016, pp. 1–20.
- [13] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Record,
vol. 39, pp. 12–27, May 2010.
- [14] S. Sivasubramanian, “Amazon dynamodb: A seamlessly scalable nonrelational
database service,” in Proceedings of the 2012 International
Conference on Management of Data - SIGMOD ’12, 2012, pp. 729–
730.
- [15] U. Vyas and P. Kuppusamy, DynamoDB Applied Design Patterns. Packt
Publishing Ltd., 2014.
- [16] R. Paul, “An introduction to building realtime apps with rethinkdb,”
March 2018, accessed: 2025-01-15. [Online]. Available: https://jaxenter.
com/building-realtime-apps-rethinkdb-115254.html
- [17] OrientDB, “Orientdb nosql models,” 2021. [Online]. Available:
http://orientdb.com/docs/3.0.x/gettingstarted/
- [18] B. Iordanov, “Hypergraphdb: A generalized graph database,” in Web-
Age Information Management. WAIM 2010 Workshops, ser. 6185 LNCS,
2010, pp. 25–36.
- [19] D. Dominguez-Sal, P. Urb´on-Bayes, A. Gim´enez-Va˜n´o, S. G´omez-
Villamor, N. Mart´ınez-Baz´an, and J. Larriba-Pey, “Survey of graph
database performance on the hpc scalable graph analysis benchmark,” in
Web-Age Information Management. WAIM 2010 Workshops, ser. 6185
LNCS, 2010, pp. 37–48.
- [20] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, pp. 29–43, 2003.
- [21] N. Gemayel, “Analyzing google file system and hadoop distributed file
system,” Research Journal of Information Technology, vol. 8, pp. 66–74,
2016.
- [22] O. Kisi, J. Shiri, S. Karimi, and R. M. Adnan, Big Data in Engineering
Applications. Springer Singapore, May 2018, vol. 44.
- [23] E. J. Khatib, R. Barco, P. Munoz, I. D. La Bandera, and I. Serrano,
“Self-healing in mobile networks with big data,” IEEE Communications
Magazine, vol. 54, no. 1, pp. 114–120, jan 2016.
- [24] B. Das, “A deep learning model for identification of diabetes type
2 based on nucleotide signals,” Neural Computing and Applications,
vol. 22, no. 1, pp. 1–5, 2022.
- [25] Q. V. Pham, D. C. Nguyen, T. Huynh-The, W. J. Hwang, and P. N.
Pathirana, “Artificial Intelligence (AI) and Big Data for Coronavirus
(COVID-19) Pandemic: A Survey on the State-of-the-Arts,” IEEE Access,
vol. 8, pp. 130 820–130 839, 2020.
- [26] A. Haleem, M. Javaid, I. H. Khan, and R. Vaishya, “Significant
Applications of Big Data in COVID-19 Pandemic,” Indian Journal of
Orthopaedics, vol. 54, no. 4, pp. 526–528, jul 2020.
- [27] J. H. Lee, R. Phaal, and S. H. Lee, “An integrated service-devicetechnology
roadmap for smart city development,” Technological Forecasting
and Social Change, vol. 80, no. 2, pp. 286–306, feb 2013.
- [28] C. L. Stimmel, Building smart cities: Analytics, ICT, and design thinking.
Auerbach Publications, aug 2015.
- [29] C. T. Yin, Z. Xiong, H. Chen, J. Y. Wang, D. Cooper, and B. David, “A
literature survey on smart cities,” Science China Information Sciences,
vol. 58, no. 10, pp. 1–18, oct 2015.
- [30] S. R., P. (2015, aug) 8 innovative examples of big data
usage in india. [Online]. Available: https://www.dqindia.com/
8-innovative-examples-of-big-data-usage-in-india/
- [31] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big data machine
learning using apache spark MLlib,” in Proceedings - 2017 IEEE
International Conference on Big Data, Big Data 2017, vol. 2018-
January. IEEE, dec 2017, pp. 3492–3498.
- [32] A. Oussous, F. Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big Data
technologies: A survey,” Journal of King Saud University - Computer
and Information Sciences, vol. 30, no. 4, pp. 431–448, oct 2018.
- [33] W. Fang, X. Z. Wen, Y. Zheng, and M. Zhou, “A Survey of Big Data
Security and Privacy Preserving,” IETE Technical Review (Institution of
Electronics and Telecommunication Engineers, India), vol. 34, no. 5, pp.
544–560, sep 2017.
- [34] P. Samarati and L. Sweeney, “Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization
and suppression,” Technical Report, SRI International Computer Science
Laboratory, 1 1998.
- [35] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, p. 3, mar 2007.
- [36] L. Ninghui, L. Tiancheng, and S. Venkatasubramanian, “t-Closeness:
Privacy beyond k-anonymity and l-diversity,” in Proceedings - International
Conference on Data Engineering. IEEE, apr 2007, pp. 106–115.
- [37] H. Y. Tran and J. Hu, “Privacy-preserving big data analytics a comprehensive
survey,” Journal of Parallel and Distributed Computing, vol.
134, pp. 207–218, dec 2019.
- [38] C. Dwork, “Differential privacy,” in Lecture Notes in Computer Science,
2006, vol. 4052 LNCS, pp. 1–12.
- [39] C. C. Aggarwal and P. S. Yu, A General Survey of Privacy-Preserving
Data Mining Models and Algorithms. Boston, MA: Springer US, 2008,
pp. 11–52.
- [40] P. Ram Mohan Rao, S. Murali Krishna, and A. P. Siva Kumar, “Privacy
preservation techniques in big data analytics: a survey,” Journal of Big
Data, vol. 5, no. 1, 2018.
- [41] M. A. Chamikara, P. Bertok, D. Liu, S. Camtepe, and I. Khalil,
“Efficient data perturbation for privacy preserving and accurate data
stream mining,” Pervasive and Mobile Computing, vol. 48, pp. 1–19,
aug 2018.
- [42] K. Chen and L. Liu, “A random rotation perturbation approach to
privacy preserving data classification,” International Conference on Data
Mining, 2005.
- [43] Chen, Keke and Liu, Ling, “Geometric data perturbation for privacy preserving
outsourced data mining,” Knowledge and Information Systems,
vol. 29, no. 3, pp. 657–695, dec 2011.
- [44] M. Z. G¨und¨uz, D. Demirol, R. Das¸, and K. Hanbay, “Frameworks for
smart grid cyber security analysis,” in Cyber Security Solutions for
Protecting and Building the Future Smart Grid, D. Asija, R. Viral,
R. Das¸, and G. Tuna, Eds. Elsevier, 2025, pp. 191–214.
- [45] S. Venkatraman and R. Venkatraman, “Big data security challenges and
strategies,” AIMS Mathematics, vol. 4, no. 3, pp. 860–879, 2019.
- [46] M. Zhao E and Y. Geng, “Homomorphic Encryption Technology for
Cloud Computing,” Procedia Computer Science, vol. 154, pp. 73–83,
2019.
- [47] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 457–473.
- [48] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” in 2007 IEEE Symposium on Security and Privacy
(SP ’07). IEEE, may 2007, pp. 321–334.
- [49] T. Bouabana-Tebibel and A. Kaci, “Parallel search over encrypted data
under attribute based encryption on the Cloud Computing,” Computers
& Security, vol. 54, pp. 77–91, oct 2015.
- [50] M. Ali, J. Mohajeri, M.-R. Sadeghi, and X. Liu, “A fully distributed
hierarchical attribute-based encryption scheme,” Theoretical Computer
Science, vol. 815, pp. 25–46, may 2020.
- [51] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and
potential solutions,” Computer Networks, vol. 169, p. 107094, 2020.
- [52] H. Satılmıs¸ and S. Akleylek, “Iot g¨uvenli˘gi ˙Ic¸in kullanılan makine
¨O
˘grenimi ve derin ¨Og˘renme modelleri U¨ zerine bir derleme,” Bilis¸im
Teknolojileri Dergisi, vol. 14, no. 4, p. 457–481, 2021.
- [53] A. G¨okdemr and A. C¸ alhan, “Nesnelerin interneti ortamlarında derin
o¨g˘renme ve makine o¨g˘renmesi tabanlı anomali tespiti,” Gazi U¨ niversitesi
M¨uhendislik Mimarlık Fak¨ultesi Dergisi, vol. 37, no. 4, p. 1945–1956,
2022.
- [54] L. E. Dai, X. Wang, and S. B. Xu, “A deep learning based anomaly
detection model for iot networks,” in Proceedings of the 2nd International
Conference on Internet of Things, Communication and Intelligent
Technology, J. Dong, L. Zhang, and D. Cheng, Eds. Singapore: Springer
Nature Singapore, 2024, pp. 187–196.
- [55] Y. Mirsky, T. Golomb, and Y. Elovici, “Lightweight collaborative
anomaly detection for the iot using blockchain,” Journal of Parallel
and Distributed Computing, vol. 145, pp. 75–97, 2020.
- [56] T. Golomb, Y. Mirsky, and Y. Elovici, “Ciota: Collaborative iot
anomaly detection via blockchain,” CoRR, vol. abs/1803.03807, 2018.
[Online]. Available: http://arxiv.org/abs/1803.03807
- [57] A. Diro, N. Chilamkurti, V.-D. Nguyen, and W. Heyne, “A comprehensive
study of anomaly detection schemes in iot networks using machine
learning algorithms,” Sensors, vol. 21, no. 24, 2021.
- [58] M. Emec¸ and M. H. O¨ zcanhan, “A hybrid deep learning approach
for intrusion detection in iot networks,” Advances in Electrical and
Computer Engineering, vol. 22, no. 1, pp. 3–12, 2022.
- [59] D. Li, W. Peng, W. Deng, and F. Gai, “A blockchain-based authentication
and security mechanism for iot,” in 2018 27th International Conference
on Computer Communication and Networks (ICCCN), 2018, pp. 1–6.
- [60] T. Xu, Z. Fu, M. Yu, J. Wang, H. Liu, and T. Qiu, “Blockchain based data
protection framework for iot in untrusted storage,” in 2021 IEEE 24th
International Conference on Computer Supported Cooperative Work in
Design (CSCWD), 2021, pp. 813–818.
- [61] G. F. T¨urker and K. Tanyeri, “Blokzincir teknolojisi ile nesnelerin
˙Interneti tabanlı (iot) sistemlerin veri g¨uvenli˘ginin sa˘glanması,” Gazi
U¨ niv. Fen Bilim. Derg. C Tasar. ve Teknol., May 2023.
- [62] S. Almarri and A. Aljughaiman, “Blockchain technology for iot security
and trust: A comprehensive slr,” Sustainability, vol. 16, no. 23, 2024.
[Online]. Available: https://www.mdpi.com/2071-1050/16/23/10177
- [63] E. U. Haque, A. Shah, J. Iqbal, S. S. Ullah, R. Alroobaea, and
S. Hussain, “A scalable blockchain based framework for efficient IoT
data management using lightweight consensus,” Sci. Rep., vol. 14, no. 1,
p. 7841, Apr. 2024.
- [64] A. M. Ruzbahani, “Ai-protected blockchain-based iot environments:
Harnessing the future of network security and privacy,” 2024. [Online].
Available: https://arxiv.org/abs/2405.13847
Blockchain-Integrated Framework for Data Security: An Application Based on IoT Data and Deep Learning
Year 2025,
Volume: 13 Issue: 1, 27 - 38
Doygun Demirol
,
Resul Daş
,
Mehmet Özdem
,
Ceren Nur Cansel
,
Davut Hanbay
Abstract
The rapid development of the IoT (Internet of Things) ecosystem leads to the creation of big data environments that require real-time analysis. In this comprehensive data ecosystem, anomaly detection and data security emerge as critical requirements. This paper presents a comprehensive approach that integrates a deep learning model developed for anomaly detection in IoT network traffic and a blockchain-based data storage structure designed to ensure data integrity. In the research, network traffic data of a sample device from the N-BaIoT dataset is used. The developed deep learning model was able to classify attack and normal traffic patterns with high accuracy. Data security is ensured with Fernet encryption algorithm, while data integrity is protected using blockchain technology. Experimental results show that the proposed system achieves significant performance metrics in terms of both anomaly detection accuracy and data security verification. The proposed framework contributes to the development of more secure and reliable IoT systems by providing an innovative solution to anomaly detection and data security challenges in IoT environments.
References
- [1] N. M. Adams, “Perspectives on data mining,” International Journal of
Market Research, vol. 52, no. 1, 2010.
- [2] D. Talia, “Clouds for scalable big data analytics,” Computer, vol. 46,
no. 5, pp. 98–101, 2013.
- [3] D. Demirol, R. Das, and D. Hanbay, “B¨uy¨uk veri ¨uzerine perspektif bir
bakıs¸,” in 2019 International Artificial Intelligence and Data Processing
Symposium (IDAP), 2019, pp. 1–9.
- [4] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “HadoopDB: An architectural hybrid of mapreduce and
DBMS technologies for analytical workloads,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 922–933, aug 2009.
- [5] V. Subramaniyaswamy, V. Vijayakumar, R. Logesh, and V. Indragandhi,
“Unstructured data analysis on big data using map reduce,” Procedia
Computer Science, vol. 50, pp. 456–465, 2015.
- [6] S. F. Oliveira, K. F¨urlinger, and D. Kranzlm¨uller, “Trends in computation,
communication and storage and the consequences for data-intensive
science,” in Proceedings of the 14th IEEE International Conference on
High Performance Computing and Communications, HPCC-2012 - 9th
IEEE International Conference on Embedded Software and Systems,
ICESS-2012. IEEE, jun 2012, pp. 572–579.
- [7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems, vol. 26, no. 2, pp. 1–26, 2008.
- [8] L. George, HBase: The Definitive Guide. O’Reilly Media, Inc., 2016.
- [9] A. Lakshman and P. Malik, “Cassandra - a decentralized structured
storage system,” Operating Systems Review (ACM), vol. 44, pp. 35–40,
2010.
- [10] V. Abramova and J. Bernardino, “Nosql databases: Mongodb vs cassandra,”
in C3S2E ’13: Proceedings of the International C* Conference on
Computer Science and Software Engineering, 2013, pp. 14–22.
- [11] M. Armbrust, A. Fox, D. Patterson, N. Lanham, B. Trushkowsky,
J. Trutna, and H. Oh, “Scads: Scale-independent storage for social
computing applications,” in CIDR 2009 - 4th Biennial Conference on
Innovative Data Systems Research, January 2009.
- [12] K. Pattnaik and B. Mishra, “Introduction to big data analysis,” in
Techniques and Environments for Big Data Analysis, 2016, pp. 1–20.
- [13] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Record,
vol. 39, pp. 12–27, May 2010.
- [14] S. Sivasubramanian, “Amazon dynamodb: A seamlessly scalable nonrelational
database service,” in Proceedings of the 2012 International
Conference on Management of Data - SIGMOD ’12, 2012, pp. 729–
730.
- [15] U. Vyas and P. Kuppusamy, DynamoDB Applied Design Patterns. Packt
Publishing Ltd., 2014.
- [16] R. Paul, “An introduction to building realtime apps with rethinkdb,”
March 2018, accessed: 2025-01-15. [Online]. Available: https://jaxenter.
com/building-realtime-apps-rethinkdb-115254.html
- [17] OrientDB, “Orientdb nosql models,” 2021. [Online]. Available:
http://orientdb.com/docs/3.0.x/gettingstarted/
- [18] B. Iordanov, “Hypergraphdb: A generalized graph database,” in Web-
Age Information Management. WAIM 2010 Workshops, ser. 6185 LNCS,
2010, pp. 25–36.
- [19] D. Dominguez-Sal, P. Urb´on-Bayes, A. Gim´enez-Va˜n´o, S. G´omez-
Villamor, N. Mart´ınez-Baz´an, and J. Larriba-Pey, “Survey of graph
database performance on the hpc scalable graph analysis benchmark,” in
Web-Age Information Management. WAIM 2010 Workshops, ser. 6185
LNCS, 2010, pp. 37–48.
- [20] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, pp. 29–43, 2003.
- [21] N. Gemayel, “Analyzing google file system and hadoop distributed file
system,” Research Journal of Information Technology, vol. 8, pp. 66–74,
2016.
- [22] O. Kisi, J. Shiri, S. Karimi, and R. M. Adnan, Big Data in Engineering
Applications. Springer Singapore, May 2018, vol. 44.
- [23] E. J. Khatib, R. Barco, P. Munoz, I. D. La Bandera, and I. Serrano,
“Self-healing in mobile networks with big data,” IEEE Communications
Magazine, vol. 54, no. 1, pp. 114–120, jan 2016.
- [24] B. Das, “A deep learning model for identification of diabetes type
2 based on nucleotide signals,” Neural Computing and Applications,
vol. 22, no. 1, pp. 1–5, 2022.
- [25] Q. V. Pham, D. C. Nguyen, T. Huynh-The, W. J. Hwang, and P. N.
Pathirana, “Artificial Intelligence (AI) and Big Data for Coronavirus
(COVID-19) Pandemic: A Survey on the State-of-the-Arts,” IEEE Access,
vol. 8, pp. 130 820–130 839, 2020.
- [26] A. Haleem, M. Javaid, I. H. Khan, and R. Vaishya, “Significant
Applications of Big Data in COVID-19 Pandemic,” Indian Journal of
Orthopaedics, vol. 54, no. 4, pp. 526–528, jul 2020.
- [27] J. H. Lee, R. Phaal, and S. H. Lee, “An integrated service-devicetechnology
roadmap for smart city development,” Technological Forecasting
and Social Change, vol. 80, no. 2, pp. 286–306, feb 2013.
- [28] C. L. Stimmel, Building smart cities: Analytics, ICT, and design thinking.
Auerbach Publications, aug 2015.
- [29] C. T. Yin, Z. Xiong, H. Chen, J. Y. Wang, D. Cooper, and B. David, “A
literature survey on smart cities,” Science China Information Sciences,
vol. 58, no. 10, pp. 1–18, oct 2015.
- [30] S. R., P. (2015, aug) 8 innovative examples of big data
usage in india. [Online]. Available: https://www.dqindia.com/
8-innovative-examples-of-big-data-usage-in-india/
- [31] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big data machine
learning using apache spark MLlib,” in Proceedings - 2017 IEEE
International Conference on Big Data, Big Data 2017, vol. 2018-
January. IEEE, dec 2017, pp. 3492–3498.
- [32] A. Oussous, F. Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big Data
technologies: A survey,” Journal of King Saud University - Computer
and Information Sciences, vol. 30, no. 4, pp. 431–448, oct 2018.
- [33] W. Fang, X. Z. Wen, Y. Zheng, and M. Zhou, “A Survey of Big Data
Security and Privacy Preserving,” IETE Technical Review (Institution of
Electronics and Telecommunication Engineers, India), vol. 34, no. 5, pp.
544–560, sep 2017.
- [34] P. Samarati and L. Sweeney, “Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization
and suppression,” Technical Report, SRI International Computer Science
Laboratory, 1 1998.
- [35] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, p. 3, mar 2007.
- [36] L. Ninghui, L. Tiancheng, and S. Venkatasubramanian, “t-Closeness:
Privacy beyond k-anonymity and l-diversity,” in Proceedings - International
Conference on Data Engineering. IEEE, apr 2007, pp. 106–115.
- [37] H. Y. Tran and J. Hu, “Privacy-preserving big data analytics a comprehensive
survey,” Journal of Parallel and Distributed Computing, vol.
134, pp. 207–218, dec 2019.
- [38] C. Dwork, “Differential privacy,” in Lecture Notes in Computer Science,
2006, vol. 4052 LNCS, pp. 1–12.
- [39] C. C. Aggarwal and P. S. Yu, A General Survey of Privacy-Preserving
Data Mining Models and Algorithms. Boston, MA: Springer US, 2008,
pp. 11–52.
- [40] P. Ram Mohan Rao, S. Murali Krishna, and A. P. Siva Kumar, “Privacy
preservation techniques in big data analytics: a survey,” Journal of Big
Data, vol. 5, no. 1, 2018.
- [41] M. A. Chamikara, P. Bertok, D. Liu, S. Camtepe, and I. Khalil,
“Efficient data perturbation for privacy preserving and accurate data
stream mining,” Pervasive and Mobile Computing, vol. 48, pp. 1–19,
aug 2018.
- [42] K. Chen and L. Liu, “A random rotation perturbation approach to
privacy preserving data classification,” International Conference on Data
Mining, 2005.
- [43] Chen, Keke and Liu, Ling, “Geometric data perturbation for privacy preserving
outsourced data mining,” Knowledge and Information Systems,
vol. 29, no. 3, pp. 657–695, dec 2011.
- [44] M. Z. G¨und¨uz, D. Demirol, R. Das¸, and K. Hanbay, “Frameworks for
smart grid cyber security analysis,” in Cyber Security Solutions for
Protecting and Building the Future Smart Grid, D. Asija, R. Viral,
R. Das¸, and G. Tuna, Eds. Elsevier, 2025, pp. 191–214.
- [45] S. Venkatraman and R. Venkatraman, “Big data security challenges and
strategies,” AIMS Mathematics, vol. 4, no. 3, pp. 860–879, 2019.
- [46] M. Zhao E and Y. Geng, “Homomorphic Encryption Technology for
Cloud Computing,” Procedia Computer Science, vol. 154, pp. 73–83,
2019.
- [47] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 457–473.
- [48] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” in 2007 IEEE Symposium on Security and Privacy
(SP ’07). IEEE, may 2007, pp. 321–334.
- [49] T. Bouabana-Tebibel and A. Kaci, “Parallel search over encrypted data
under attribute based encryption on the Cloud Computing,” Computers
& Security, vol. 54, pp. 77–91, oct 2015.
- [50] M. Ali, J. Mohajeri, M.-R. Sadeghi, and X. Liu, “A fully distributed
hierarchical attribute-based encryption scheme,” Theoretical Computer
Science, vol. 815, pp. 25–46, may 2020.
- [51] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and
potential solutions,” Computer Networks, vol. 169, p. 107094, 2020.
- [52] H. Satılmıs¸ and S. Akleylek, “Iot g¨uvenli˘gi ˙Ic¸in kullanılan makine
¨O
˘grenimi ve derin ¨Og˘renme modelleri U¨ zerine bir derleme,” Bilis¸im
Teknolojileri Dergisi, vol. 14, no. 4, p. 457–481, 2021.
- [53] A. G¨okdemr and A. C¸ alhan, “Nesnelerin interneti ortamlarında derin
o¨g˘renme ve makine o¨g˘renmesi tabanlı anomali tespiti,” Gazi U¨ niversitesi
M¨uhendislik Mimarlık Fak¨ultesi Dergisi, vol. 37, no. 4, p. 1945–1956,
2022.
- [54] L. E. Dai, X. Wang, and S. B. Xu, “A deep learning based anomaly
detection model for iot networks,” in Proceedings of the 2nd International
Conference on Internet of Things, Communication and Intelligent
Technology, J. Dong, L. Zhang, and D. Cheng, Eds. Singapore: Springer
Nature Singapore, 2024, pp. 187–196.
- [55] Y. Mirsky, T. Golomb, and Y. Elovici, “Lightweight collaborative
anomaly detection for the iot using blockchain,” Journal of Parallel
and Distributed Computing, vol. 145, pp. 75–97, 2020.
- [56] T. Golomb, Y. Mirsky, and Y. Elovici, “Ciota: Collaborative iot
anomaly detection via blockchain,” CoRR, vol. abs/1803.03807, 2018.
[Online]. Available: http://arxiv.org/abs/1803.03807
- [57] A. Diro, N. Chilamkurti, V.-D. Nguyen, and W. Heyne, “A comprehensive
study of anomaly detection schemes in iot networks using machine
learning algorithms,” Sensors, vol. 21, no. 24, 2021.
- [58] M. Emec¸ and M. H. O¨ zcanhan, “A hybrid deep learning approach
for intrusion detection in iot networks,” Advances in Electrical and
Computer Engineering, vol. 22, no. 1, pp. 3–12, 2022.
- [59] D. Li, W. Peng, W. Deng, and F. Gai, “A blockchain-based authentication
and security mechanism for iot,” in 2018 27th International Conference
on Computer Communication and Networks (ICCCN), 2018, pp. 1–6.
- [60] T. Xu, Z. Fu, M. Yu, J. Wang, H. Liu, and T. Qiu, “Blockchain based data
protection framework for iot in untrusted storage,” in 2021 IEEE 24th
International Conference on Computer Supported Cooperative Work in
Design (CSCWD), 2021, pp. 813–818.
- [61] G. F. T¨urker and K. Tanyeri, “Blokzincir teknolojisi ile nesnelerin
˙Interneti tabanlı (iot) sistemlerin veri g¨uvenli˘ginin sa˘glanması,” Gazi
U¨ niv. Fen Bilim. Derg. C Tasar. ve Teknol., May 2023.
- [62] S. Almarri and A. Aljughaiman, “Blockchain technology for iot security
and trust: A comprehensive slr,” Sustainability, vol. 16, no. 23, 2024.
[Online]. Available: https://www.mdpi.com/2071-1050/16/23/10177
- [63] E. U. Haque, A. Shah, J. Iqbal, S. S. Ullah, R. Alroobaea, and
S. Hussain, “A scalable blockchain based framework for efficient IoT
data management using lightweight consensus,” Sci. Rep., vol. 14, no. 1,
p. 7841, Apr. 2024.
- [64] A. M. Ruzbahani, “Ai-protected blockchain-based iot environments:
Harnessing the future of network security and privacy,” 2024. [Online].
Available: https://arxiv.org/abs/2405.13847