Research Article
BibTex RIS Cite

DC Mikro Şebekede Çift Yönlü Güç Transferi için Arıza Toleranslı Güç Kontrol Stratejisinin Performans Analizi

Year 2025, Volume: 13 Issue: 3, 272 - 278
https://doi.org/10.17694/bajece.1722413

Abstract

Bu çalışma, dönüştürücü arıza koşulları altında hassas yükler için sürekli güç kaynağı sağlamak üzere tasarlanmış bir DC mikro şebekesi için arıza toleranslı bir dönüştürücü kontrol stratejisi önermektedir. Gerçek zamanlı DC-bara voltajı arıza tespit mekanizması tarafından yönlendirilen önerilen strateji, çift modlu işlemlerde çift yönlü DC-DC dönüştürücüde çalıştırılır: akü şarjı için düşürücü mod ve akü deşarjı için yükseltici mod. Normal koşullar altında, akü sistemi sabit akım kontrolü ile şarj edilirken, dönüştürücü arıza koşulları sırasında sorunsuz bir şekilde yükseltme moduna geçerek kararlı bir 48 V çıkış voltajı sağlar. Matlab/Simulink üzerinden gerçekleştirilen performans değerlendirmeleri, önerilen yöntemin yük voltajını sabitleme, akü şarj/deşarjını verimli bir şekilde yönetme ve ek kontrol karmaşıklıkları olmadan sistem güvenilirliğini artırmadaki etkinliğini göstermektedir. Bu yaklaşım, kararlı, verimli ve dayanıklı DC mikro şebeke işlemlerine doğru önemli bir ilerleme sağlamaktadır.

References

  • [1] K. Paul et al., "Optimizing sustainable energy management in grid connected microgrids using quantum particle swarm optimization for cost and emission reduction," Scientific Reports, vol. 15, no. 1, p. 5843, 2025.
  • [2] G. S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, and A. Stojcevski, "Role of optimization techniques in microgrid energy management systems—A review," Energy Strategy Reviews, vol. 43, p. 100899, 2022.
  • [3] S. Ferahtia, A. Houari, T. Cioara, M. Bouznit, H. Rezk, and A. Djerioui, "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, vol. 368, p. 123501, 2024.
  • [4] A. W. Adegboyega, S. Sepasi, H. O. R. Howlader, B. Griswold, M. Matsuura, and L. R. Roose, "DC Microgrid Deployments and Challenges: A Comprehensive Review of Academic and Corporate Implementations," Energies, vol. 18, no. 5, p. 1064, 2025.
  • [5] S. S. Rangarajan et al., "DC microgrids: a propitious smart grid paradigm for smart cities," Smart Cities, vol. 6, no. 4, pp. 1690-1718, 2023.
  • [6] F. S. Al-Ismail, "DC microgrid planning, operation, and control: A comprehensive review," IEEE Access, vol. 9, pp. 36154-36172, 2021.
  • [7] B. Aluisio, M. Dicorato, I. Ferrini, G. Forte, R. Sbrizzai, and M. Trovato, "Planning and reliability of DC microgrid configurations for Electric Vehicle Supply Infrastructure," International Journal of Electrical Power & Energy Systems, vol. 131, p. 107104, 2021.
  • [8] S. Sarangi, B. K. Sahu, and P. K. Rout, "A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction," International journal of energy research, vol. 45, no. 4, pp. 5006-5031, 2021.
  • [9] S. J. Ríos, D. J. Pagano, and K. E. Lucas, "Bidirectional power sharing for DC microgrid enabled by dual active bridge DC-DC converter," Energies, vol. 14, no. 2, p. 404, 2021.
  • [10] S. Punna, R. Mailugundla, and S. R. Salkuti, "Design, analysis and implementation of bidirectional DC–DC converters for Hess in DC microgrid applications," Smart Cities, vol. 5, no. 2, pp. 433-454, 2022.
  • [11] M. S. Mahdavi, M. S. Karimzadeh, T. Rahimi, and G. B. Gharehpetian, "A fault-tolerant bidirectional converter for battery energy storage systems in DC microgrids," Electronics, vol. 12, no. 3, p. 679, 2023.
  • [12] T.-C. Kuo, T. T. Pham, D. M. Bui, P. D. Le, T. L. Van, and P.-T. Huang, "Reliability evaluation of an aggregate power conversion unit in the off-grid PV-battery-based DC microgrid from local energy communities under dynamic and transient operation," Energy Reports, vol. 8, pp. 5688-5726, 2022.
  • [13] S. K. Prince, S. Affijulla, and G. Panda, "Protection of DC microgrids based on complex power during faults in on/off-grid scenarios," IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 244-254, 2022.
  • [14] M. Berger, I. Kocar, E. Farantatos, and A. Haddadi, "Modeling of Li-ion battery energy storage systems (BESSs) for grid fault analysis," Electric Power Systems Research, vol. 196, p. 107160, 2021.
  • [15] M. M. Savrun, M. İnci, and M. Büyük, "Design and analysis of a high energy efficient multi-port dc-dc converter interface for fuel cell/battery electric vehicle-to-home (V2H) system," Journal of Energy Storage, vol. 45, p. 103755, 2022.
  • [16] J. Bilansky, M. Lacko, M. Pastor, A. Marcinek, and F. Durovsky, "Improved digital twin of li-ion battery based on generic matlab model," Energies, vol. 16, no. 3, p. 1194, 2023.
  • [17] W. Christopher et al., "A bidirectional DC/DC converter for renewable energy source-fed EV charging stations with enhanced DC link voltage and ripple frequency management," Results in Engineering, vol. 24, p. 103469, 2024.
  • [18] T. Chen et al., "An optimized bidirectional buck–boost converter for DC bus voltage stabilization in new generation poloidal field power supply," Energy Reports, vol. 8, pp. 188-200, 2022.

Performance Analysis of Fault-tolerant Power Control Strategy for Bidirectional Power Transfer in DC Microgrid

Year 2025, Volume: 13 Issue: 3, 272 - 278
https://doi.org/10.17694/bajece.1722413

Abstract

This study proposes a fault-tolerant converter control strategy for a DC microgrid designed to maintain continuous power supply to sensitive loads under converter failure conditions. The proposed control method is formed from constant current (CC) and constant voltage (CV) controllers with a fault detection method. In normal operating conditions, the proposed controller operates in CC control mode to control the power flow between the battery and the dc grid. The fault detection method observes grid voltage in real-time to detect grid voltage disturbance on the grid. If a voltage disturbance is detected, the fault detection method switches the controller to CV mode to maintain a stable bus voltage on the dc microgrid. Performance evaluations conducted via Matlab/Simulink demonstrate the effectiveness of the proposed method in stabilizing load voltage, managing battery charging/discharging efficiently, and enhancing system reliability without additional control complexities. This approach provides a significant advancement toward stable, efficient, and resilient DC microgrid operations.

Ethical Statement

There is no conflict of interests.

References

  • [1] K. Paul et al., "Optimizing sustainable energy management in grid connected microgrids using quantum particle swarm optimization for cost and emission reduction," Scientific Reports, vol. 15, no. 1, p. 5843, 2025.
  • [2] G. S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, and A. Stojcevski, "Role of optimization techniques in microgrid energy management systems—A review," Energy Strategy Reviews, vol. 43, p. 100899, 2022.
  • [3] S. Ferahtia, A. Houari, T. Cioara, M. Bouznit, H. Rezk, and A. Djerioui, "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, vol. 368, p. 123501, 2024.
  • [4] A. W. Adegboyega, S. Sepasi, H. O. R. Howlader, B. Griswold, M. Matsuura, and L. R. Roose, "DC Microgrid Deployments and Challenges: A Comprehensive Review of Academic and Corporate Implementations," Energies, vol. 18, no. 5, p. 1064, 2025.
  • [5] S. S. Rangarajan et al., "DC microgrids: a propitious smart grid paradigm for smart cities," Smart Cities, vol. 6, no. 4, pp. 1690-1718, 2023.
  • [6] F. S. Al-Ismail, "DC microgrid planning, operation, and control: A comprehensive review," IEEE Access, vol. 9, pp. 36154-36172, 2021.
  • [7] B. Aluisio, M. Dicorato, I. Ferrini, G. Forte, R. Sbrizzai, and M. Trovato, "Planning and reliability of DC microgrid configurations for Electric Vehicle Supply Infrastructure," International Journal of Electrical Power & Energy Systems, vol. 131, p. 107104, 2021.
  • [8] S. Sarangi, B. K. Sahu, and P. K. Rout, "A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction," International journal of energy research, vol. 45, no. 4, pp. 5006-5031, 2021.
  • [9] S. J. Ríos, D. J. Pagano, and K. E. Lucas, "Bidirectional power sharing for DC microgrid enabled by dual active bridge DC-DC converter," Energies, vol. 14, no. 2, p. 404, 2021.
  • [10] S. Punna, R. Mailugundla, and S. R. Salkuti, "Design, analysis and implementation of bidirectional DC–DC converters for Hess in DC microgrid applications," Smart Cities, vol. 5, no. 2, pp. 433-454, 2022.
  • [11] M. S. Mahdavi, M. S. Karimzadeh, T. Rahimi, and G. B. Gharehpetian, "A fault-tolerant bidirectional converter for battery energy storage systems in DC microgrids," Electronics, vol. 12, no. 3, p. 679, 2023.
  • [12] T.-C. Kuo, T. T. Pham, D. M. Bui, P. D. Le, T. L. Van, and P.-T. Huang, "Reliability evaluation of an aggregate power conversion unit in the off-grid PV-battery-based DC microgrid from local energy communities under dynamic and transient operation," Energy Reports, vol. 8, pp. 5688-5726, 2022.
  • [13] S. K. Prince, S. Affijulla, and G. Panda, "Protection of DC microgrids based on complex power during faults in on/off-grid scenarios," IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 244-254, 2022.
  • [14] M. Berger, I. Kocar, E. Farantatos, and A. Haddadi, "Modeling of Li-ion battery energy storage systems (BESSs) for grid fault analysis," Electric Power Systems Research, vol. 196, p. 107160, 2021.
  • [15] M. M. Savrun, M. İnci, and M. Büyük, "Design and analysis of a high energy efficient multi-port dc-dc converter interface for fuel cell/battery electric vehicle-to-home (V2H) system," Journal of Energy Storage, vol. 45, p. 103755, 2022.
  • [16] J. Bilansky, M. Lacko, M. Pastor, A. Marcinek, and F. Durovsky, "Improved digital twin of li-ion battery based on generic matlab model," Energies, vol. 16, no. 3, p. 1194, 2023.
  • [17] W. Christopher et al., "A bidirectional DC/DC converter for renewable energy source-fed EV charging stations with enhanced DC link voltage and ripple frequency management," Results in Engineering, vol. 24, p. 103469, 2024.
  • [18] T. Chen et al., "An optimized bidirectional buck–boost converter for DC bus voltage stabilization in new generation poloidal field power supply," Energy Reports, vol. 8, pp. 188-200, 2022.
There are 18 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

Adnan Tan 0000-0002-5227-2556

Early Pub Date October 8, 2025
Publication Date October 14, 2025
Submission Date June 18, 2025
Acceptance Date July 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Tan, A. (2025). Performance Analysis of Fault-tolerant Power Control Strategy for Bidirectional Power Transfer in DC Microgrid. Balkan Journal of Electrical and Computer Engineering, 13(3), 272-278. https://doi.org/10.17694/bajece.1722413

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı