Research Article
BibTex RIS Cite

Toplu Parametreli İletim Hattının MATLAB/Simulink Kullanılarak Modellenmesi

Year 2025, Volume: 13 Issue: 3, 286 - 294
https://doi.org/10.17694/bajece.1761735

Abstract

İletim hatlarının doğru bir şekilde modellenmesi, farklı işletme ve arıza koşulları altında dinamik davranışlarının öngörülmesi açısından temel öneme sahiptir. Bu çalışma, MATLAB/Simulink kullanılarak tek fazlı toplu parametreli bir iletim hattının geçici rejim performansına yönelik bir araştırma sunmaktadır. Araştırma, π-devre temsillerinde bölüm sayısının (N) dalga şekli doğruluğu ve yayılım karakteristikleri üzerindeki etkisini incelemektedir. Gönderici ve alıcı uçlardaki gerilim ve akım dalga formlarını analiz etmek için sistematik bir simülasyon çerçevesi geliştirilmiş; enerjilendirme kaynaklı salınımlar, yayılma gecikmeleri ve kararlı duruma geçiş gibi temel olgular yakalanmıştır. ATP-EMTP gibi geleneksel araçların aksine, önerilen modelleme yaklaşımı devre topolojisinin elle yeniden oluşturulmasına gerek kalmadan parametrelerin esnek bir şekilde ayarlanmasına imkân tanımakta, bu da ölçeklenebilirlik ve hesaplama verimliliği açısından önemli avantajlar sağlamaktadır. Elde edilen sonuçlar, model bölümlendirmesi ile geçici rejim doğruluğu arasındaki ilişkiye dair daha derin bir farkındalık sunarak, hem akademik çalışmalar hem de güç sistemi tasarımı, kararlılık değerlendirmesi ve koruma sistemi geliştirme gibi mühendislik uygulamaları için pratik bir yol gösterici olmaktadır.

References

  • [1] M. Koksal, M. S. Mamis, “Remark on the Lumped Parameter Modeling of Transmission Lines.” Electr. Mach. Power Syst., vol. 28, no. 6, pp. 565–575, Jun. 2000, doi: 10.1080/073135600268180.
  • [2] M. S. Mamis, “State-Space Transient Analysis of Single-Phase Transmission Lines with Corona,” Proc. Int. Conf. Power Syst. Transients 2003 (IPST 2003), 2003.
  • [3] J. S. L. Colqui, A. R. J. De Araújo, and S. Kurokawa, “Improving the performance of a lumped transmission line model used in electromagnetic transient analysis,” IET Gener. Transm. Distrib., vol. 13, no. 21, pp. 4942–4951, Nov. 2019, doi: 10.1049/iet-gtd.2018.6301.
  • [4] S. Kurokawa, F. N. R. Yamanaka, A. J. Prado, and J. Pissolato, “Inclusion of the frequency effect in the lumped parameters transmission line model: State space formulation,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1155–1163, Jul. 2009, doi: 10.1016/j.epsr.2009.02.007.
  • [5] M. S. Mamis, “Lumped-parameter-based electromagnetic transients simulation of non-uniform singlephase lines using state variable method,” IET Gener. Transm. Distrib., vol. 14, no. 23, pp. 5626–5633, Dec. 2020, doi: 10.1049/iet-gtd.2020.0454.
  • [6] A. R. J. Araújo, R. C. Silva, and S. Kurokawa, “Comparing Lumped and Distributed Parameters Models in,” in 2014 Ieee Pes T&d Conference And Exposition, 2014, pp. 1–5.
  • [7] G. Bilal, P. Gomez, R. Salcedo, and J. M. Villanueva-Ramirez, “Electromagnetic transient studies of large distribution systems using frequency domain modeling methods and network reduction techniques,” Int. J. Electr. Power Energy Syst., vol. 110, no. January, pp. 11–20, Sep. 2019, doi: 10.1016/j.ijepes.2019.02.043.
  • [8] J. S. L. Colqui, L. C. Timaná, P. T. Caballero, S. Kurokawa, and J. P. Filho, “A modified implementation of the Folded Line Equivalent transmission line model in the Alternative Transient Program,” Electr. Power Syst. Res., vol. 211, no. November 2021, p. 108185, Oct. 2022, doi: 10.1016/j.epsr.2022.108185.
  • [9] A. Sinkar, H. Zhao, B. Qu, and A. M. Gole, “A Comparative Study of Electromagnetic Transient Simulations using Companion Circuits, and Descriptor State-space Equations,” Electr. Power Syst. Res., vol. 198, no. April, p. 107360, 2021, doi: 10.1016/j.epsr.2021.107360.
  • [10] J. T. R. Pineda and S. Kurokawa, “Application of modal-phase domain relations to estimate transmission line parameters,” IET Sci. Meas. Technol., vol. 13, no. 5, pp. 684–691, Jul. 2019, doi: 10.1049/iet-smt.2018.5428.
  • [11] A. Kumar, J. C. Dash, and D. Sarkar, “Computational Techniques for Design and Analysis of Time-Varying Capacitor Loaded Transmission Lines Using FDTD and Simulink,” IEEE J. Multiscale Multiphysics Comput. Tech., vol. 7, pp. 228–235, 2022, doi: 10.1109/JMMCT.2022.3202990.
  • [12] İ. Arı and M. S. Mamiş, “Voltage Distribution on Transformer Windings Subjected to Lightning Strike Using State-Space Method,” Appl. Sci., vol. 15, no. 3, p. 1569, Feb. 2025, doi: 10.3390/app15031569.
  • [13] D. Akmaz, “İletim Hatlarinda Ariza Yeri Ve Türünün Geçici Rejim Sinyalleri Ve Makine Öğrenme Algoritmalari İle Belirlenmesi,” Ph.D. Dissertation, İnönü Universtiy, 2017.

Lumped-Parameter Transmission Line Modeling Using MATLAB/Simulink

Year 2025, Volume: 13 Issue: 3, 286 - 294
https://doi.org/10.17694/bajece.1761735

Abstract

Accurate modeling of transmission lines is fundamental for predicting their dynamic behavior under various operating and fault conditions. This study presents a comprehensive investigation into the transient performance of a single-phase lumped-parameter transmission line using MATLAB/Simulink. The research investigates the impact of section number (N) in π-section representations on waveform fidelity and propagation characteristics. A systematic simulation framework was developed to analyze voltage and current waveforms at both sending and receiving ends, capturing key phenomena such as energization-induced oscillations, propagation delays, and the progression toward steady-state conditions. Unlike conventional tools such as ATP-EMTP, the proposed modeling approach enables flexible parameter adjustment without manual reconstruction of circuit topology, offering significant advantages in scalability and computational efficiency. The results provide deeper insight into the relationship between model segmentation and transient accuracy, offering practical guidance for both academic studies and engineering applications in power system design, stability assessment, and protection scheme development.

References

  • [1] M. Koksal, M. S. Mamis, “Remark on the Lumped Parameter Modeling of Transmission Lines.” Electr. Mach. Power Syst., vol. 28, no. 6, pp. 565–575, Jun. 2000, doi: 10.1080/073135600268180.
  • [2] M. S. Mamis, “State-Space Transient Analysis of Single-Phase Transmission Lines with Corona,” Proc. Int. Conf. Power Syst. Transients 2003 (IPST 2003), 2003.
  • [3] J. S. L. Colqui, A. R. J. De Araújo, and S. Kurokawa, “Improving the performance of a lumped transmission line model used in electromagnetic transient analysis,” IET Gener. Transm. Distrib., vol. 13, no. 21, pp. 4942–4951, Nov. 2019, doi: 10.1049/iet-gtd.2018.6301.
  • [4] S. Kurokawa, F. N. R. Yamanaka, A. J. Prado, and J. Pissolato, “Inclusion of the frequency effect in the lumped parameters transmission line model: State space formulation,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1155–1163, Jul. 2009, doi: 10.1016/j.epsr.2009.02.007.
  • [5] M. S. Mamis, “Lumped-parameter-based electromagnetic transients simulation of non-uniform singlephase lines using state variable method,” IET Gener. Transm. Distrib., vol. 14, no. 23, pp. 5626–5633, Dec. 2020, doi: 10.1049/iet-gtd.2020.0454.
  • [6] A. R. J. Araújo, R. C. Silva, and S. Kurokawa, “Comparing Lumped and Distributed Parameters Models in,” in 2014 Ieee Pes T&d Conference And Exposition, 2014, pp. 1–5.
  • [7] G. Bilal, P. Gomez, R. Salcedo, and J. M. Villanueva-Ramirez, “Electromagnetic transient studies of large distribution systems using frequency domain modeling methods and network reduction techniques,” Int. J. Electr. Power Energy Syst., vol. 110, no. January, pp. 11–20, Sep. 2019, doi: 10.1016/j.ijepes.2019.02.043.
  • [8] J. S. L. Colqui, L. C. Timaná, P. T. Caballero, S. Kurokawa, and J. P. Filho, “A modified implementation of the Folded Line Equivalent transmission line model in the Alternative Transient Program,” Electr. Power Syst. Res., vol. 211, no. November 2021, p. 108185, Oct. 2022, doi: 10.1016/j.epsr.2022.108185.
  • [9] A. Sinkar, H. Zhao, B. Qu, and A. M. Gole, “A Comparative Study of Electromagnetic Transient Simulations using Companion Circuits, and Descriptor State-space Equations,” Electr. Power Syst. Res., vol. 198, no. April, p. 107360, 2021, doi: 10.1016/j.epsr.2021.107360.
  • [10] J. T. R. Pineda and S. Kurokawa, “Application of modal-phase domain relations to estimate transmission line parameters,” IET Sci. Meas. Technol., vol. 13, no. 5, pp. 684–691, Jul. 2019, doi: 10.1049/iet-smt.2018.5428.
  • [11] A. Kumar, J. C. Dash, and D. Sarkar, “Computational Techniques for Design and Analysis of Time-Varying Capacitor Loaded Transmission Lines Using FDTD and Simulink,” IEEE J. Multiscale Multiphysics Comput. Tech., vol. 7, pp. 228–235, 2022, doi: 10.1109/JMMCT.2022.3202990.
  • [12] İ. Arı and M. S. Mamiş, “Voltage Distribution on Transformer Windings Subjected to Lightning Strike Using State-Space Method,” Appl. Sci., vol. 15, no. 3, p. 1569, Feb. 2025, doi: 10.3390/app15031569.
  • [13] D. Akmaz, “İletim Hatlarinda Ariza Yeri Ve Türünün Geçici Rejim Sinyalleri Ve Makine Öğrenme Algoritmalari İle Belirlenmesi,” Ph.D. Dissertation, İnönü Universtiy, 2017.
There are 13 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

İlker Arı 0000-0002-1171-5533

Ramazan Menak 0000-0003-3223-4808

Early Pub Date October 8, 2025
Publication Date October 14, 2025
Submission Date August 9, 2025
Acceptance Date September 9, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Arı, İ., & Menak, R. (2025). Lumped-Parameter Transmission Line Modeling Using MATLAB/Simulink. Balkan Journal of Electrical and Computer Engineering, 13(3), 286-294. https://doi.org/10.17694/bajece.1761735

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı