Review
BibTex RIS Cite

Covid-19 Pandemisi İle Mücadelede Biyoteknolojik Yaklaşım: Bitki Biyoteknolojisi, Kullanımı Ve Önemi

Year 2022, , 13 - 30, 29.04.2022
https://doi.org/10.53445/batd.915189

Abstract

Yeni Tip Koronavirüs (2019-nCoV) ilk olarak Aralık 2019’da tanımlanan yeni bir patojendir. 11 Mart 2020 de Dünya Sağlık Örgütü (DSÖ) tarafından pandemi ilan edilmiştir. Tüm dünyayı etkisi altına alan bu salgınla mücadelede bitki biyoteknolojisi bize yardımcı olabilir. Bu kapsamda bitkilerin biyoteknolojik uygulamaları üzerine çalışan araştırmacılar, bilgi ve altyapılarını, yeni teşhis reaktifleri ve terapötikler geliştirmek ve üretmek için bir araç olarak kullanarak bu kritik dönemde önemli bir rol oynayabilirler. Bitkiler bize Covid-19 ile mücadelemizde üç farklı alanda büyük katkı sağlayabilir: Enfekte ve iyileşmiş bireyleri tanımlamak için teşhis reaktifleri, enfeksiyonu önlemek için aşılar ve semptomları tedavi etmek için antiviral ilaçlar olarak. Bununla birlikte bitkiler kullanılarak elde edilecek ürünlerin uygun maliyeti sayesinde tüm dünyada kullanımı hızla yayılabilecektir. Ayrıca moleküler tarım, antikor, aşı, hormon ve enzimler içeren oldukça değerli rekombinant proteinlerin üretimi için bitki türlerinin konakçı olarak kullanılmasını içeren biyoteknolojisi uygulaması olarak kullanılabilir. Bitkilerden üretilmiş antijenler ve antikorlar da teşhis için uygun araçlar olabilir; antijenik determinantları ve özgüllüğünü koruyarak düşük maliyetli proteinler sağlanabilir. Bitkilerdeki geçici ekspresyon, bakteri hücrelerine ve memeli hücrelerine dayanan geleneksel platformlardan daha hızlıdır, çünkü nihai ürünü üreten sabit hücre çizgileri oluşturma zorunluluğu yoktur veya ölçeklenebilirlik nedeniyle ölçeklendirilmiş işlemlerin geliştirilmesine de gerek yoktur. Bu nedenle geçici ekspresyon, birkaç hafta içinde klinik test için malzeme sağlanmasına izin verir ve klinik sınıf materyalin büyük ölçekli üretimi, minimum yatırımla mümkündür. Bu derlemede Covid-19 ile mücadelede bitki biyoteknolojisinin bize kazandırdıkları ve önümüzdeki süreçte bu teknolojinin nasıl kullanılabileceği anlatılmaktadır.

References

  • Banker, D. D. (2001). Monoclonal antibodies. A review. Indian Journal of Medical Sciences, 55(12), 651–654. https://doi.org/10.2174/1574884712666170809124728
  • Bashandy, H., Jalkanen, S., & Teeri, T. H. (2015). Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods, 11(1), 1–7. https://doi.org/10.1186/s13007-015-0091-5
  • Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00549
  • Buyel, J. F., Woo, J. A., Cramer, S. M., & Fischer, R. (2013). The use of quantitative structure-activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production. Journal of Chromatography A, 1322, 18–28. https://doi.org/10.1016/j.chroma.2013.10.076
  • Capell, T., Twyman, R. M., Armario-Najera, V., Ma, J. K. C., Schillberg, S., & Christou, P. (2020). Potential Applications of Plant Biotechnology against SARS-CoV-2. Trends in Plant Science, 1–9. https://doi.org/10.1016/j.tplants.2020.04.009
  • Choi, Y. S., Moon, J. H., Kim, T. G., & Lee, J. Y. (2016). Potent in vitro and in vivo activity of plantibody specific for porphyromonas gingivalis FimA. Clinical and Vaccine Immunology, 23(4), 346–352. https://doi.org/10.1128/CVI.00620-15
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
  • D’Aoust, M. A., Couture, M. M. J., Charland, N., Trépanier, S., Landry, N., Ors, F., & Vézina, L. P. (2010). The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnology Journal, 8(5), 607–619. https://doi.org/10.1111/j.1467-7652.2009.00496.x
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV - A target for vaccine and therapeutic development. Nature Reviews Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., Zhou, M., Chen, L., Meng, S., Hu, Y., Peng, C., Yuan, M., Huang, J., Wang, Z., Yu, J., Gao, X., Wang, D., Yu, X., Li, L., … Yang, X. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9490–9496. https://doi.org/10.1073/pnas.2004168117
  • Fischer, R., & Buyel, J. F. (2020). Molecular farming – The slope of enlightenment. Biotechnology Advances, 40, 107519. https://doi.org/10.1016/j.biotechadv.2020.107519
  • Gleba, Y., Klimyuk, V., & Marillonnet, S. (2005). Magnifection - A new platform for expressing recombinant vaccines in plants. Vaccine, 23(17–18), 2042–2048. https://doi.org/10.1016/j.vaccine.2005.01.006
  • Gómez, N., Carrillo, C., Salinas, J., Parra, F., Borca, M. V., & Escribano, J. M. (1998). Expression of immunogenic glycoprotein S polypeptides from transmissible gastroenteritis coronavirus in transgenic plants. Virology, 249(2), 352–358. https://doi.org/10.1006/viro.1998.9315
  • Gralinski, L. E., & Menachery, V. D. (2020). Return of of the the Coronavirus : Viruses, 12(135), 1–8. https://doi.org/10.3390/v12020135
  • Gretebeck, L. M., & Subbarao, K. (2015). Animal models for SARS and MERS coronaviruses. Current Opinion in Virology, 13, 123–129. https://doi.org/10.1016/j.coviro.2015.06.009
  • Hiatt, A., Cafferkey, R., & Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature, 342(6245), 76–78. https://doi.org/10.1038/342076a0
  • Hiatt, A., Pauly, M., Whaley, K., Qiu, X., Kobinger, G., & Zeitlin, L. (2015). The emergence of antibody therapies for Ebola. Human Antibodies, 23(3–4), 49–56. https://doi.org/10.3233/HAB-150284

Biotechnological Approach in Fighting Covid-19 Pandemic: Plant Biotechnology, Its Use and Importance

Year 2022, , 13 - 30, 29.04.2022
https://doi.org/10.53445/batd.915189

Abstract

New type coronavirus (2019-nCoV) is a new pathogen first described in December 2019. Pandemic was declared by the World Health Organization (WHO) on March 11, 2020. Plant biotechnology can help us to fight this epidemic, which affects the whole world. In this context, researchers working on the biotechnological applications of plants can play an important role in this critical period, using their knowledge and infrastructure as a tool to develop and produce new diagnostic reagents and therapeutics. Plants can make a big contribution to us in our fight against Covid-19 in three different areas: Diagnostic reagents to identify infected and healed individuals, vaccines to prevent infection and antiviral drugs to treat symptoms. In addition, thanks to the affordable cost of the products to be obtained using plants, its use will be spread rapidly all over the world. Also, molecular agriculture, it can be used as a biotechnology application involving the use of plant species as hosts for the production of highly valuable recombinant proteins containing antibodies, vaccines, hormones and enzymes. Plant-made antigens and antibodies may also be suitable tools for diagnosis; low-cost proteins can be provided by preserving antigenic determinants and specificity. Transient expression in plants is faster than traditional platforms based on bacterial cells and mammalian cells because there is no obligation to create fixed cell lines that produce the final product or scaled processes need to be developed due to scalability. Therefore, transient expression allows for material testing for clinical testing within a few weeks, and large-scale production of clinical grade material is possible with minimal investment. In this review, it is explained what plant biotechnology has brought us to fight Covid-19 and how this technology can be used in the upcoming period.

References

  • Banker, D. D. (2001). Monoclonal antibodies. A review. Indian Journal of Medical Sciences, 55(12), 651–654. https://doi.org/10.2174/1574884712666170809124728
  • Bashandy, H., Jalkanen, S., & Teeri, T. H. (2015). Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods, 11(1), 1–7. https://doi.org/10.1186/s13007-015-0091-5
  • Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00549
  • Buyel, J. F., Woo, J. A., Cramer, S. M., & Fischer, R. (2013). The use of quantitative structure-activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production. Journal of Chromatography A, 1322, 18–28. https://doi.org/10.1016/j.chroma.2013.10.076
  • Capell, T., Twyman, R. M., Armario-Najera, V., Ma, J. K. C., Schillberg, S., & Christou, P. (2020). Potential Applications of Plant Biotechnology against SARS-CoV-2. Trends in Plant Science, 1–9. https://doi.org/10.1016/j.tplants.2020.04.009
  • Choi, Y. S., Moon, J. H., Kim, T. G., & Lee, J. Y. (2016). Potent in vitro and in vivo activity of plantibody specific for porphyromonas gingivalis FimA. Clinical and Vaccine Immunology, 23(4), 346–352. https://doi.org/10.1128/CVI.00620-15
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
  • D’Aoust, M. A., Couture, M. M. J., Charland, N., Trépanier, S., Landry, N., Ors, F., & Vézina, L. P. (2010). The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnology Journal, 8(5), 607–619. https://doi.org/10.1111/j.1467-7652.2009.00496.x
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV - A target for vaccine and therapeutic development. Nature Reviews Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., Zhou, M., Chen, L., Meng, S., Hu, Y., Peng, C., Yuan, M., Huang, J., Wang, Z., Yu, J., Gao, X., Wang, D., Yu, X., Li, L., … Yang, X. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9490–9496. https://doi.org/10.1073/pnas.2004168117
  • Fischer, R., & Buyel, J. F. (2020). Molecular farming – The slope of enlightenment. Biotechnology Advances, 40, 107519. https://doi.org/10.1016/j.biotechadv.2020.107519
  • Gleba, Y., Klimyuk, V., & Marillonnet, S. (2005). Magnifection - A new platform for expressing recombinant vaccines in plants. Vaccine, 23(17–18), 2042–2048. https://doi.org/10.1016/j.vaccine.2005.01.006
  • Gómez, N., Carrillo, C., Salinas, J., Parra, F., Borca, M. V., & Escribano, J. M. (1998). Expression of immunogenic glycoprotein S polypeptides from transmissible gastroenteritis coronavirus in transgenic plants. Virology, 249(2), 352–358. https://doi.org/10.1006/viro.1998.9315
  • Gralinski, L. E., & Menachery, V. D. (2020). Return of of the the Coronavirus : Viruses, 12(135), 1–8. https://doi.org/10.3390/v12020135
  • Gretebeck, L. M., & Subbarao, K. (2015). Animal models for SARS and MERS coronaviruses. Current Opinion in Virology, 13, 123–129. https://doi.org/10.1016/j.coviro.2015.06.009
  • Hiatt, A., Cafferkey, R., & Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature, 342(6245), 76–78. https://doi.org/10.1038/342076a0
  • Hiatt, A., Pauly, M., Whaley, K., Qiu, X., Kobinger, G., & Zeitlin, L. (2015). The emergence of antibody therapies for Ebola. Human Antibodies, 23(3–4), 49–56. https://doi.org/10.3233/HAB-150284
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences, Environmentally Sustainable Engineering
Journal Section Review Articles
Authors

Adem Zorlu 0000-0002-7885-4458

Publication Date April 29, 2022
Published in Issue Year 2022

Cite

APA Zorlu, A. (2022). Covid-19 Pandemisi İle Mücadelede Biyoteknolojik Yaklaşım: Bitki Biyoteknolojisi, Kullanımı Ve Önemi. Bütünleyici Ve Anadolu Tıbbı Dergisi, 3(2), 13-30. https://doi.org/10.53445/batd.915189

Bütünleyici ve Anadolu Tıbbı Dergisi

Journal of Integrative and Anatolian Medicine