Determination of Fatty Acid Profiles in Seed, Fruit and Fruit Peel Parts of the Laurel (Laurus Nobilis L.) by GC-FID
Year 2022,
Volume: 3 Issue: 3, 3 - 16, 29.08.2022
Mustafa Şentürk
,
Duygu Mısırlı
,
Merve Soy
,
Mahfuz Elmastaş
Abstract
The fixed oil of Laurus nobilis fruit is used as a fragrance, spice, and tea in the field of food today; and it is used in medicine with its various effects such as antifungal, antioxidant and antimicrobial. While obtaining Laurus nobilis fixed oil, it is presumed that different parts of the plant and the methods to be used in oil extraction will change the oil yield and the pharmaceutical effect of the oil. Therefore, in this study, three different parts of Laurus nobilis which are fruit, fruit seed and fruit peel were extracted by cold pressed and Soxhlet methods and their fatty acid profiles were analyzed by GC-FID. The results show that the highest concentration of fatty acids belong to the laurel fruit extracted by soxhlet method consisting of 50.71% saturated fatty acids. The laurel peel extracted by cold pressed method follows it containing unsaturated fatty acids with a rate of 49.78%. Then the laurel seed extracted by soxhlet method follows it consisting of 40.40% saturated fatty acids. In this study, the effect of different extraction methods on the fatty acid ratios in the fruit, fruit seed and fruit peel parts of laurel was examined.
References
- Akyüz, M., Güzel, A., & Elmastas, M. (2019). Fatty Acid Composition And Antioxidant Capacity Of Myrtus (Myrtus communis L.). Malaysian Applied Biology, 48(5), 101–112. Retrieved from https://jms.mabjournal.com/index.php/mab/article/view/1591
- Anzano, A., de Falco, B., Grauso L., Motti R., Lanzotti V. (2022). Laurel, Laurus nobilis L.: a review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem Reviews. 21, 565–615.
- Armijo, A.A., Altarejos, J. & Salido, Sofia. (2017). Phytochemicals and biological activities of laurel tree (Laurus nobilis). Natural Product Communications, 12(5), 97.
- Aspé, E., Fernández, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Industrial Crops and Products. 34(1), 838-844. https://doi.org/10.1016/j.indcrop.2011.02.002
- Baydar, H. (2009). Tıbbi ve Aromatik Bitkiler Bilimi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayınları, 1(51), 234-235.
- Baytop, T. (1999). Türkiye’de bitkiler ile tedavi. İstanbul: Nobel tıp kitapevleri.
- Cunha, I. B. S., Sawayaa A. C. H. F., Caetanob F. M., Shimizua M. T., Marcucci M. C., Drezza F. T., Povia G. S., Carvalho P. O. (2004). Factors that Influence the Yield and Composition of Brazilian Propolis Extracts. J. Braz. Chem. Soc., 15(6), 964-970.
- Echarte, M.M., Puntel, L.A., Aguirrezabal, L.A.N. (2013) Assessment of the critical period for the effect of intercepted solar radiation on sunflower oil fatty acid composition. Field Crops Research, 149, 213-222. https://doi.org/10.1016/j.fcr.2013.05.007
- Fidan, H. Stefanova, G. Kostova, I. Stankov, S. Damyanova, S. Stoyanova & A. Zheljazkov. (2019). Chemical composition and antimicrobial activity of Laurus nobilis l. essential oils from Bulgaria. Molecules, 24(4), 804.
- Kaseke, T., Opara, L.U. & Fawole, A.O. (2021). Quality and antioxidant properties of cold-pressed oil from. Foods, 2(10), 712.
- Kazeem, M.I., Ogunwande, I.A. (2012). Role of fixed oil and fats in human physiology and pathophysiology. Recent Progress in Medicinal Plants 33(2), 85-103.
- Koçer, O., Ayanoğlu, F. (2021). Dişi defne (Laurus nobilis) genotiplerinde meyve yağ asitleri kompozisyonlarının belirlenmesi. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 3(1), 72-88.
- Marsoul, A., Ijjaali, M., Oumous, I., Bennani, B., Boukir, A. (2020). Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Materials Today: Proceedings, 31(1), 183-189. https://doi.org/10.1016/j.matpr.2020.08.082
- Marzouki, H., Piras, A., Marongiu, B., Rosa, A. ve Dessi, A. M. (2008). Extraction and separation of volatile and fixed oils from berries of Laurus nobilis by supercritical co2. Molecules, 13(8), 1702-1711.
- Nourbakhsh, M., Bal, Y. (2005). Recovery of Fixed and Volatile Oils from Laurus Nobilis L.Fruit and Leaves by Solvent Extraction Method. Eng.&Arch.Fac. Eskişehir Osmangazi University, 18(2).
- Saab, A., Tundis, R., Loizzo, R., Lampronti, I., Borgatti, M., Gambari, R., Menichini, F. (2021). Antioxidant and antiproliferative activity of Laurus nobilis (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Natural Product Research, 26(18), 1741-1745.
- Said, C. M., Isam, H. A. M. (2018). Contribution Study of the Fixed Oil in Laurus Nobilis L. Wide Spread in Syria. European Journal of Pharmaceutical and Medical Research, 5(3), 133-137.
- Türkmen, M.; Koçer, O. (2021). Variation of components in laurel (Laurus nobilis L.) fixed oil extracted by different methods. Int. J. Chem. Technol. 5 (2), 167-171. http://dx.doi.org/10.32571/ijct.1006137
Defne (Laurus nobilis L.) Tohumu, Meyvesi ve Meyve Kabuğundaki Yağ Asidi Profilinin GC-FID ile Belirlenmesi
Year 2022,
Volume: 3 Issue: 3, 3 - 16, 29.08.2022
Mustafa Şentürk
,
Duygu Mısırlı
,
Merve Soy
,
Mahfuz Elmastaş
Abstract
Laurus nobilis meyvesinin sabit yağı günümüzde gıda alanında koku, baharat ve çay olarak; sağlık alanında antifungal, antioksidan, antimikrobiyal gibi etkileriyle kullanılmaktadır. Laurus nobilis sabit yağı elde edilirken yağ eldesinde kullanılacak bitki kısımlarının ve yağ elde etme yönteminin yağ verimliliğini ve yağ asit profilleri üzerine etkisini değiştireceği düşünülmektedir. Bu nedenle bu çalışmada; Laurus nobilis meyvesi, meyve çekirdeği ve meyve kabuğu olarak bitkinin 3 farklı kısmı soğuk sıkım ve soxhlet yöntemleri ile ekstrakte edilmiş ve bunların yağ asit profilleri GC-FID ile analiz edilmiştir. Analiz sonucuna göre, yağ asitlerinin en yüksek konsantrasyonu, %50.71 doymuş yağ asitlerinden oluşan soxhlet yöntemiyle ekstrakte edilmiş defne meyvesine aittir. Bunu %49.78 oranında doymamış yağ asitleri içeren soğuk sıkım yöntemiyle elde edilmiş defne kabuğu takip etmektedir. Ardından soxhlet yöntemiyle ekstrakte edilmiş %40.40 oranında doymuş yağ asitlerinden oluşan defne tohumu gelmektedir. Bu çalışmada, defnenin meyve, meyve çekirdeği ve meyve kabuğu kısımlarındaki yağ asidi oranlarına farklı ekstraksiyon yöntemlerinin etkisi incelenmiştir.
References
- Akyüz, M., Güzel, A., & Elmastas, M. (2019). Fatty Acid Composition And Antioxidant Capacity Of Myrtus (Myrtus communis L.). Malaysian Applied Biology, 48(5), 101–112. Retrieved from https://jms.mabjournal.com/index.php/mab/article/view/1591
- Anzano, A., de Falco, B., Grauso L., Motti R., Lanzotti V. (2022). Laurel, Laurus nobilis L.: a review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem Reviews. 21, 565–615.
- Armijo, A.A., Altarejos, J. & Salido, Sofia. (2017). Phytochemicals and biological activities of laurel tree (Laurus nobilis). Natural Product Communications, 12(5), 97.
- Aspé, E., Fernández, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Industrial Crops and Products. 34(1), 838-844. https://doi.org/10.1016/j.indcrop.2011.02.002
- Baydar, H. (2009). Tıbbi ve Aromatik Bitkiler Bilimi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayınları, 1(51), 234-235.
- Baytop, T. (1999). Türkiye’de bitkiler ile tedavi. İstanbul: Nobel tıp kitapevleri.
- Cunha, I. B. S., Sawayaa A. C. H. F., Caetanob F. M., Shimizua M. T., Marcucci M. C., Drezza F. T., Povia G. S., Carvalho P. O. (2004). Factors that Influence the Yield and Composition of Brazilian Propolis Extracts. J. Braz. Chem. Soc., 15(6), 964-970.
- Echarte, M.M., Puntel, L.A., Aguirrezabal, L.A.N. (2013) Assessment of the critical period for the effect of intercepted solar radiation on sunflower oil fatty acid composition. Field Crops Research, 149, 213-222. https://doi.org/10.1016/j.fcr.2013.05.007
- Fidan, H. Stefanova, G. Kostova, I. Stankov, S. Damyanova, S. Stoyanova & A. Zheljazkov. (2019). Chemical composition and antimicrobial activity of Laurus nobilis l. essential oils from Bulgaria. Molecules, 24(4), 804.
- Kaseke, T., Opara, L.U. & Fawole, A.O. (2021). Quality and antioxidant properties of cold-pressed oil from. Foods, 2(10), 712.
- Kazeem, M.I., Ogunwande, I.A. (2012). Role of fixed oil and fats in human physiology and pathophysiology. Recent Progress in Medicinal Plants 33(2), 85-103.
- Koçer, O., Ayanoğlu, F. (2021). Dişi defne (Laurus nobilis) genotiplerinde meyve yağ asitleri kompozisyonlarının belirlenmesi. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 3(1), 72-88.
- Marsoul, A., Ijjaali, M., Oumous, I., Bennani, B., Boukir, A. (2020). Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Materials Today: Proceedings, 31(1), 183-189. https://doi.org/10.1016/j.matpr.2020.08.082
- Marzouki, H., Piras, A., Marongiu, B., Rosa, A. ve Dessi, A. M. (2008). Extraction and separation of volatile and fixed oils from berries of Laurus nobilis by supercritical co2. Molecules, 13(8), 1702-1711.
- Nourbakhsh, M., Bal, Y. (2005). Recovery of Fixed and Volatile Oils from Laurus Nobilis L.Fruit and Leaves by Solvent Extraction Method. Eng.&Arch.Fac. Eskişehir Osmangazi University, 18(2).
- Saab, A., Tundis, R., Loizzo, R., Lampronti, I., Borgatti, M., Gambari, R., Menichini, F. (2021). Antioxidant and antiproliferative activity of Laurus nobilis (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Natural Product Research, 26(18), 1741-1745.
- Said, C. M., Isam, H. A. M. (2018). Contribution Study of the Fixed Oil in Laurus Nobilis L. Wide Spread in Syria. European Journal of Pharmaceutical and Medical Research, 5(3), 133-137.
- Türkmen, M.; Koçer, O. (2021). Variation of components in laurel (Laurus nobilis L.) fixed oil extracted by different methods. Int. J. Chem. Technol. 5 (2), 167-171. http://dx.doi.org/10.32571/ijct.1006137