Antibiyofilm aktivitenin değerlendirilmesinde kullanılan in vitro-statik testler
Year 2025,
Volume: 27 Issue: 2, 762 - 779, 15.07.2025
Simay Aldağ
,
Ayşenur Yazıcı
Abstract
Biyofilmler, genellikle farklı mikroorganizma türlerini ve bunların salgıladıkları polisakkaritleri, ekstrasellüler DNA (e-DNA)’yı ve proteinleri içeren yapılardır. Günümüzde insan enfeksiyonlarının %80’inden fazlasının biyofilm kaynaklı olduğu tahmin edilmektedir. Bu nedenle, yeni antibiyofilm ajanların araştırılması ve biyofilm direnç mekanizmalarının anlaşılması oldukça önemlidir. Biyofilm oluşumları birçok faktör tarafından etkilendiği için uygun yöntem seçimi kritik öneme sahiptir. Bu derleme çalışmasının amacı, biyofilm çalışmalarında, antibiyofilm ajanların araştırılmasında ve biyofilmlerin moleküler yapılarının incelenmesinde kullanılan statik yöntemler hakkında bilgi vermektir. Tüm klinik çalışmalara uygun ideal bir biyofilm çalışma yöntemi bulunmamakla birlikte, bu derleme çalışmasında, doğal veya sentetik moleküllerin araştırılmasında kullanılan mevcut in vitro-statik yöntemler özellikleri, avantajları ve dezavantajları ile ele alınmıştır.
Thanks
Yüksek Teknoloji Uygulama ve Araştırma Merkezi (YUTAM)’da bulunan Taramalı Elektron Mikroskobu (SEM) görüntülerinin alınmasında yardımcı olan Dr. Öğr. Üyesi Mustafa Yazıcı’ya teşekkürlerimizi sunarız. Diğer fotoğraflar, YUTAM, Moleküler Mikrobiyoloji laboratuvarında çekilmiştir.
References
-
Harriott, MM., Biofilms and antibiotics, Reference Module in Biomedical Sciences, 1–11, (2019).
-
Bisson, C., Lec P-H, Blique, M., Thilly, N., Machouart, M., Presence of trichomonads in subgingival biofilm of patients with periodontitis: preliminary results, Parasitology Research, v. 117, p. 3767–3774, (2018).
-
Sauer, K., Stoodley, P., Goeres, DM., Hall-Stoodley, L., Burmølle, M., Stewart, PS., et al., The biofilm life cycle: expanding the conceptual model of biofilm formation, Nature Reviews Microbiology, v. 20, n. 10, p. 608–620, (2022).
-
Querido, MM., Aguiar, L., Neves, P., Pereira, CC., Teixeira, JP., Self-disinfecting surfaces and infection control, Colloids and Surfaces B: Biointerfaces, v. 178, p. 8–21, 2019).
-
Liu, H. Y., Prentice, E. L., & Webber, M. A., Mechanisms of antimicrobial resistance in biofilms. npj Antimicrobials and Resistance, v. 2, n. 1, p. 27, (2024).
-
Zhao, A., Sun, J., Liu, Y., Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in cellular and infection microbiology, v. 13, p. 1137947, (2023).
-
Mah, T-FC., O’Toole, GA., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, v. 9, n. 1, p. 34–39, (2001).
-
Mah, T-F., Pitts, B., Pellock, B., Walker, GC., Stewart, PS., O’Toole, GA., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, v. 426, n. 6964, p. 306–310, (2003).
-
Rajput, A., Bhamare, KT., Thakur, A., Kumar, M., Biofilm-i: a platform for predicting biofilm inhibitors using quantitative structure—relationship (QSAR) based regression models to curb antibiotic resistance, Molecules, v. 27, n. 15, p. 4861, (2022).
-
Solano, C., Echeverz, M., Lasa, I., Biofilm dispersion and quorum sensing, Current Opinion in Microbiology, v. 18, p. 96–104, (2014).
-
Michaelis, C., Grohmann, E., Horizontal gene transfer of antibiotic resistance genes in biofilms, Antibiotics, v. 12, n. 2, p. 328, (2023).
-
Madsen, J. S., Burmølle, M., Hansen, L. H., & Sørensen, S. J., The interconnection between biofilm formation and horizontal gene transfer, FEMS Immunology & Medical Microbiology, v. 65, n. 2, p. 183–195, (2012).
-
Thieme, L., Hartung, A., Tramm, K., Klinger-Strobel, M., Jandt, KD., Makarewicz, O., et al., MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology, Biological Procedures Online, v. 21, p. 1–5, (2019).
-
Peterson, SB., Irie, Y., Borlee, BR., Murakami, K., Harrison, JJ., Colvin, KM., et al., Different methods for culturing biofilms in vitro, Biofilm İnfections, p. 251–266, (2011).
-
Rath, H., Stumpp, S. N., Stıesch, M., Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials, PLoS One, v. 12, n. 2, p. e0172095, (2017).
-
Kwasny, S.M., Opperman, TJ., Static biofilm cultures of Gram‐positive pathogens grown in a microtiter format used for anti‐biofilm drug discovery, Current Protocols in Pharmacology, v. 50, n. 1, p. 13A–8, (2010).
-
Waters, EM., McCarthy, H., Hogan, S., Zapotoczna, M., O’Neill, E., O’Gara, JP., Rapid quantitative and qualitative analysis of biofilm production by Staphylococcus epidermidis under static growth conditions, Methods and Protocols, p. 157–166, (2014).
-
Kishen, A., Haapasalo, M., Biofilm models and methods of biofilm assessment, Endodontic Topics, v. 22, n. 1, p. 58–78, (2010).
-
Mirani, ZA. et al., Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus, Iranian journal of basic medical sciences, v. 21, n. 2, p. 175,(2018).
-
Dutta, B., Nag, M., Lahiri, D., Ray, RR., Analysis of biofilm matrix by multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) during nosocomial infections, Analytical methodologies for biofilm research, p. 183–203, (2021).
-
Haney, E.F. et al., Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides, Biomolecules, v. 8, n. 2, p. 29, (2018).
-
Gaudreau, AM., Labrie, J., Goetz, C., Dufour, S., Jacques, M., Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms, Journal of microbiological methods, v. 145, p. 79–81, (2018).
-
Kaali, P., Momcilovic, D., Markström, A., Aune, R., Czel, G., Karlsson, S., Degradation of biomedical polydimethylsiloxanes during exposure to in vivo biofilm environment monitored by FE‐SEM, ATR‐FTIR, and MALDI‐TOF MS, Journal of Applied Polymer Science, v. 115, n. 2, p. 802–810, (2010).
-
Christensen, GD., et al., Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices, Journal of Clinical Microbiology, v. 22, n. 6, p. 996–1006, (1985).
-
Wayne, PA., Clinical and Laboratory Standards İnstitute, Performance standards for antimicrobial susceptibility testing, (2011).
-
Silva, NBS., Alves, PGV., de Andrade Marques, L., Silva, SF., de Oliveira Faria, G., de Araújo, LB., et al., Quantification of biofilm produced by clinical, environment and hands’ isolates Klebsiella species using colorimetric and classical methods, Journal of Microbiological Methods, v. 185, p. 106231, (2021).
-
Yang, Y., Jung, D., Bai D, Yoo G., Choi, J., Counterion‐dye staining method for DNA in agarose gels using crystal violet and methyl orange, Electrophoresis, v. 22, n. 5, p. 855–859, (2001).
-
O’toole, GA., Microtiter dish biofilm formation assay, Journal of Visualized Experiments, n. 47, p. e2437, (2011).
-
Song, X., Xia, Y-X, He, Z-D., Zhang, H-J., A review of natural products with anti-biofilm activity, Current Organic Chemistry, v. 22, n. 8, p. 789–817, (2018).
-
Lajhar, SA., Brownlıe, J., Barlow, R., Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia, BMC microbiology, v. 18, p. 1–15, (2018).
-
Saxena, S., Banerjee, G., Garg, R., Singh, M., Comparative study of biofilm formation in Pseudomonas aeruginosa isolates from patients of lower respiratory tract infection, Journal of clinical and diagnostic research: JCDR, v. 8, n. 5, p. DC09, (2014).
-
Nett, JE., Cain, MT., Crawford, K., Andes, DR., Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay, Journal of clinical microbiology, v. 49, n. 4, p. 1426–1433, (2011).
-
Doğan, Ö., Ataç, N., Babuccu, G., Can, F., Comparison of Crystal Violet Staining Assay and XTT Methods in the evaluation of biofilm formation in Candida parapsilosis Candidemia Isolates, Infectious diseases and clinical microbiology (Online), v. 3, n. 3, p. 158–163, (2021).
-
Sumiyoshi, M., Miyazaki, T., Makau, JN., Mizuta, S., Tanaka, Y., Ishikawa, T., et al., Novel and potent antimicrobial effects of caspofungin on drug-resistant Candida and bacteria, Scientific Reports, v. 10, n. 1, p. 17745, (2020).
-
Ou, F., McGoverin, C., Swift, S., Vanholsbeeck, F., Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy, Analytical and Bioanalytical Chemistry, v. 411, p. 3653–3663, (2019).
-
Rosenberg, M., Azevedo, NF., Ivask, A., Propidium iodide staining underestimates viability of adherent bacterial cells, Scientific Reports, v. 9, n. 1, p. 6483, (2019).
-
Freeman, DJ., Falkıner, FR., Keane, CT., New method for detecting slime production by coagulase negative staphylococci, Journal of Clinical Pathology, v. 42, n. 8, p. 872–874, (1989).
-
Kaiser, TDL., Pereira, EM., Dos Santos, KRN., Maciel, ELN., Schuenck, RP., Nunes, APF., Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis, Diagnostic Microbiology and İnfectious Disease, v. 75, n. 3, p. 235–239, (2013).
-
Panda, PS., Chaudhary, U., Dube, SK., Comparison of four different methods for detection of biofilm formation by uropathogens, Indian Journal of Pathology and Microbiology, v. 59, n. 2, p. 177–179, (2016).
-
Hufnagel, D. A., Depas, W. H., & Chapman, M. R., The biology of the Escherichia coli extracellular Matrix, Microbiology spectrum, v. 3, n. 3, p. 10–1128, (2015).
-
Dzionek, A., Dzik, J., Wojcieszyńska, D., Guzik, U., Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells, Catalysts, v. 8, n. 10, p. 434, (2018).
-
Wu, Y. F., Lee, T. Y., Liao, W. T., Chuan, H. H., Cheng, N. C., Cheng, C. M., Rapid detection of biofilm with modified alcian blue staining: in‐vitro protocol improvement and validation with clinical cases, Wound Repair and Regeneration, v. 28, n. 6, p. 834–843, (2020).
-
Barbosa, I., Garcia, S., Barbier-Chassefière, V., Caruelle, J-P., Martelly, I., Papy-García, D., Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies, Glycobiology, v. 13, n. 9, p. 647–653, (2003).
-
Tote, K., Berghe, D Vanden., Maes, L., Cos, P., A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms, Letters İn Applied Microbiology, v. 46, n. 2, p. 249–254, (2008).
-
Ommen, P., Zobek, N., Meyer, RL., Quantification of biofilm biomass by staining: Non-toxic safranin can replace the popular crystal violet. Journal Of Microbiological Methods, v. 141, p. 87–89, (2017).
-
Knobloch, J. K. M., Horstkotte, M. A., Rohde, H., & Mack, D., Evaluation of different detection methods of biofilm formation in Staphylococcus aureus, Medical microbiology and immunology, v. 191, p. 101–106, (2002).
-
Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M., Evaluation of different detection methods of biofilm formation in the clinical isolates, Brazilian journal of infectious diseases, v. 15, p. 305–311, (2011).
-
Crémet, L., Corvec, S., Batard, E., Auger, M., Lopez, I., Pagniez, et al., Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli, Diagnostic microbiology and infectious disease, v. 75, n. 3, p. 252–255, (2013).
-
Walker, JN., Horswıll, AR., A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma, Frontiers İn Cellular And İnfection Microbiology, v. 2, p. 39, (2012).
-
Norton, TA., Thompson, RC., Pope, J., Veltkamp, CJ., Banks, B., Howard, C V., et al., Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms, Aquatic Microbial Ecology, v. 16, n. 2, p. 199–204, (1998).
-
Relucenti, M., Familiari, G., Donfrancesco, O., Taurino, M., Li X, Chen R., et al., Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons, Biology, v. 10, n. 1, p. 51, (2021).
-
Bossù, M., Selan, L., Artini, M., Relucenti, M., Familiari, G., Papa, R., et al., Characterization of Scardovia wiggsiae biofilm by original scanning electron microscopy protocol, Microorganisms, v. 8, n. 6, p. 807, (2020).
-
Chandra, J., Mukherjee, PK., Ghannoum, MA., In vitro growth and analysis of Candida biofilms, Nature Protocols, v. 3, n. 12, p. 1909–1924, (2008).
-
Lage, OM., Ramos, MC., Calisto, R., Almeida, E., Vasconcelos, V., Vicente, F., Current screening methodologies in drug discovery for selected human diseases, Marine Drugs, v. 16, n. 8, p. 279, (2018).
-
Schlafer, S., Meyer, RL., Confocal microscopy imaging of the biofilm matrix, Journal of microbiological methods, v. 138, p. 50–59, (2017).
-
Lenz, AP., Williamson, KS., Pitts, B., Stewart, PS., Franklin, MJ., Localized gene expression in Pseudomonas aeruginosa biofilms, Applied and environmental microbiology, v. 74, n. 14, p. 4463–4471, (2008).
-
Pérez-Osorio, AC., Franklın, MJ., Isolation of RNA and DNA from biofilm samples obtained by laser capture microdissection microscopy, Cold Spring Harbor Protocols, v. 2008, n. 10, p. pdb-prot5065, (2008).
-
Yazdani, R., Oshaghi, M., Havaei, A., Pishva, E., Salehi, R., Sadeghizadeh, M., et al., Detection of icaAD gene and biofilm formation in Staphylococcus aureus isolates from wound infections, Iranian Journal of Public Health, (2006).
-
Magalhães, AP., França, Â., Pereira, MO., Cerca N., RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms, Scientific Reports, v. 9, n. 1, p. 13639, (2019).
-
Pérez-Osorıo, AC., Franklın, M.J., qRT-PCR of microbial biofilms, Cold Spring Harbor Protocols, v. 2008, n. 10, p. pdb-prot5066, (2008).
-
Merrıtt, JH., Kadourı, DE., O’Toole, GA., Growing and analyzing static biofilms, Current protocols in microbiology, v. 22, n. 1, p. 1B – 1, (2011).
-
Sung, K., et al., Methods to grow and measure in vitro static biofilms, (2022).
-
Caputo, P., Di Martino, MC., Perfetto, B., Iovino, F., Donnarumma, G., Use of MALDI-TOF MS to discriminate between biofilm-producer and non-producer strains of Staphylococcus epidermidis, International Journal of Environmental Research and Public Health, v. 15, n. 8, p. 1695, (2019).
-
Pereira, FDES., Bonatto, CC., Lopes, CAP., Pereira, AL., Silva, LP., Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces, Microbial Pathogenesis, v. 86, p. 32–37, (2015).
-
Gaudreau, AM., Labrie, J., Goetz, C., Dufour, S., Jacques, M., Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms, Journal of Microbiological Methods, v. 145, p. 79–81, (2018).
-
Schmıtt, J., Flemmıng, H.-C., FTIR-spectroscopy in microbial and material analysis, International Biodeterioration & Biodegradation, v. 41, n. 1, p. 1–11, (1998).
-
Tugarova, AV., Scheludko, AV., Dyatlova, YA., Filip’echeva, YA., Kamnev, AA., FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245. 1610, Journal of Molecular Structure, v. 1140, p. 142–147, (2017).
-
Quılès, F., Humbert, F., Delille, A., Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 75, n. 2, p. 610–616, (2010).
-
Chirman, D., Pleshko, N., Characterization of bacterial biofilm infections with Fourier transform infrared spectroscopy: A review, Applied Spectroscopy Reviews, v. 56, n. 8–10, p. 673–701, (2021).
-
Sedki, M., Hassan, RYA., Andreescu, S., El-Sherbiny, IM., Online-monitoring of biofilm formation using nanostructured electrode surfaces. Materials Science and Engineering: C, v. 100, p. 178–185, (2019).
-
Ceri, H., Olson, ME., Stremick, C., Read, RR., Morck, D., Buret, A., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, Journal Of Clinical Microbiology, v. 37, n. 6, p. 1771–1776, (1999).
-
Reiferth, V. M., Holtmann, D., Müller, D., Flexible biofilm monitoring device, Wiley Online Library,v.22, n.12, p. 796-802, (2022).
-
Di Domenico, E. G., Toma, L., Provot, C., Ascenzioni, F., Sperduti, I., Prignano, G., et al., Development of an in vitro assay, based on the biofilm ring test®, for rapid profiling of biofilm-growing bacteria, Frontiers in Microbiology, v. 7, p. 1429, (2016).
-
Olivares, E., Badel-Berchoux, S., Provot, C., Jaulhac, B., Prévost, G., Bernardi, T., & Jehl, F .,The BioFilm Ring Test: a rapid method for routine analysis of Pseudomonas aeruginosa biofilm formation kinetics, Journal Of Clinical Microbiology, v. 54, n. 3, p. 657–661, (2016).
In vitro-static tests used to evaluate antibiofilm activity
Year 2025,
Volume: 27 Issue: 2, 762 - 779, 15.07.2025
Simay Aldağ
,
Ayşenur Yazıcı
Abstract
Biofilms are structures that usually contain different species of microorganisms and secreted polysaccharides, extracellular DNA (e-DNA) and proteins. It is currently estimated that over 80% of human infections involve biofilm-associated microorganisms. Therefore, it is very important to discover new antibiofilm agents and understand biofilm resistance mechanisms. Given that biofilm formation is influenced by various factors, selecting an appropriate method is essential for such studies. The aim of this review is to provide information about methods used in biofilm studies, the search for antibiofilm agents, and examinations of the molecular structures of biofilms. Although there is no ideal biofilm study method suitable for all clinical applications, this review presents the features, advantages, and disadvantages of current in vitro static methods used to evaluate natural or synthetic compounds.
References
-
Harriott, MM., Biofilms and antibiotics, Reference Module in Biomedical Sciences, 1–11, (2019).
-
Bisson, C., Lec P-H, Blique, M., Thilly, N., Machouart, M., Presence of trichomonads in subgingival biofilm of patients with periodontitis: preliminary results, Parasitology Research, v. 117, p. 3767–3774, (2018).
-
Sauer, K., Stoodley, P., Goeres, DM., Hall-Stoodley, L., Burmølle, M., Stewart, PS., et al., The biofilm life cycle: expanding the conceptual model of biofilm formation, Nature Reviews Microbiology, v. 20, n. 10, p. 608–620, (2022).
-
Querido, MM., Aguiar, L., Neves, P., Pereira, CC., Teixeira, JP., Self-disinfecting surfaces and infection control, Colloids and Surfaces B: Biointerfaces, v. 178, p. 8–21, 2019).
-
Liu, H. Y., Prentice, E. L., & Webber, M. A., Mechanisms of antimicrobial resistance in biofilms. npj Antimicrobials and Resistance, v. 2, n. 1, p. 27, (2024).
-
Zhao, A., Sun, J., Liu, Y., Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in cellular and infection microbiology, v. 13, p. 1137947, (2023).
-
Mah, T-FC., O’Toole, GA., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, v. 9, n. 1, p. 34–39, (2001).
-
Mah, T-F., Pitts, B., Pellock, B., Walker, GC., Stewart, PS., O’Toole, GA., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, v. 426, n. 6964, p. 306–310, (2003).
-
Rajput, A., Bhamare, KT., Thakur, A., Kumar, M., Biofilm-i: a platform for predicting biofilm inhibitors using quantitative structure—relationship (QSAR) based regression models to curb antibiotic resistance, Molecules, v. 27, n. 15, p. 4861, (2022).
-
Solano, C., Echeverz, M., Lasa, I., Biofilm dispersion and quorum sensing, Current Opinion in Microbiology, v. 18, p. 96–104, (2014).
-
Michaelis, C., Grohmann, E., Horizontal gene transfer of antibiotic resistance genes in biofilms, Antibiotics, v. 12, n. 2, p. 328, (2023).
-
Madsen, J. S., Burmølle, M., Hansen, L. H., & Sørensen, S. J., The interconnection between biofilm formation and horizontal gene transfer, FEMS Immunology & Medical Microbiology, v. 65, n. 2, p. 183–195, (2012).
-
Thieme, L., Hartung, A., Tramm, K., Klinger-Strobel, M., Jandt, KD., Makarewicz, O., et al., MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology, Biological Procedures Online, v. 21, p. 1–5, (2019).
-
Peterson, SB., Irie, Y., Borlee, BR., Murakami, K., Harrison, JJ., Colvin, KM., et al., Different methods for culturing biofilms in vitro, Biofilm İnfections, p. 251–266, (2011).
-
Rath, H., Stumpp, S. N., Stıesch, M., Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials, PLoS One, v. 12, n. 2, p. e0172095, (2017).
-
Kwasny, S.M., Opperman, TJ., Static biofilm cultures of Gram‐positive pathogens grown in a microtiter format used for anti‐biofilm drug discovery, Current Protocols in Pharmacology, v. 50, n. 1, p. 13A–8, (2010).
-
Waters, EM., McCarthy, H., Hogan, S., Zapotoczna, M., O’Neill, E., O’Gara, JP., Rapid quantitative and qualitative analysis of biofilm production by Staphylococcus epidermidis under static growth conditions, Methods and Protocols, p. 157–166, (2014).
-
Kishen, A., Haapasalo, M., Biofilm models and methods of biofilm assessment, Endodontic Topics, v. 22, n. 1, p. 58–78, (2010).
-
Mirani, ZA. et al., Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus, Iranian journal of basic medical sciences, v. 21, n. 2, p. 175,(2018).
-
Dutta, B., Nag, M., Lahiri, D., Ray, RR., Analysis of biofilm matrix by multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) during nosocomial infections, Analytical methodologies for biofilm research, p. 183–203, (2021).
-
Haney, E.F. et al., Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides, Biomolecules, v. 8, n. 2, p. 29, (2018).
-
Gaudreau, AM., Labrie, J., Goetz, C., Dufour, S., Jacques, M., Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms, Journal of microbiological methods, v. 145, p. 79–81, (2018).
-
Kaali, P., Momcilovic, D., Markström, A., Aune, R., Czel, G., Karlsson, S., Degradation of biomedical polydimethylsiloxanes during exposure to in vivo biofilm environment monitored by FE‐SEM, ATR‐FTIR, and MALDI‐TOF MS, Journal of Applied Polymer Science, v. 115, n. 2, p. 802–810, (2010).
-
Christensen, GD., et al., Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices, Journal of Clinical Microbiology, v. 22, n. 6, p. 996–1006, (1985).
-
Wayne, PA., Clinical and Laboratory Standards İnstitute, Performance standards for antimicrobial susceptibility testing, (2011).
-
Silva, NBS., Alves, PGV., de Andrade Marques, L., Silva, SF., de Oliveira Faria, G., de Araújo, LB., et al., Quantification of biofilm produced by clinical, environment and hands’ isolates Klebsiella species using colorimetric and classical methods, Journal of Microbiological Methods, v. 185, p. 106231, (2021).
-
Yang, Y., Jung, D., Bai D, Yoo G., Choi, J., Counterion‐dye staining method for DNA in agarose gels using crystal violet and methyl orange, Electrophoresis, v. 22, n. 5, p. 855–859, (2001).
-
O’toole, GA., Microtiter dish biofilm formation assay, Journal of Visualized Experiments, n. 47, p. e2437, (2011).
-
Song, X., Xia, Y-X, He, Z-D., Zhang, H-J., A review of natural products with anti-biofilm activity, Current Organic Chemistry, v. 22, n. 8, p. 789–817, (2018).
-
Lajhar, SA., Brownlıe, J., Barlow, R., Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia, BMC microbiology, v. 18, p. 1–15, (2018).
-
Saxena, S., Banerjee, G., Garg, R., Singh, M., Comparative study of biofilm formation in Pseudomonas aeruginosa isolates from patients of lower respiratory tract infection, Journal of clinical and diagnostic research: JCDR, v. 8, n. 5, p. DC09, (2014).
-
Nett, JE., Cain, MT., Crawford, K., Andes, DR., Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay, Journal of clinical microbiology, v. 49, n. 4, p. 1426–1433, (2011).
-
Doğan, Ö., Ataç, N., Babuccu, G., Can, F., Comparison of Crystal Violet Staining Assay and XTT Methods in the evaluation of biofilm formation in Candida parapsilosis Candidemia Isolates, Infectious diseases and clinical microbiology (Online), v. 3, n. 3, p. 158–163, (2021).
-
Sumiyoshi, M., Miyazaki, T., Makau, JN., Mizuta, S., Tanaka, Y., Ishikawa, T., et al., Novel and potent antimicrobial effects of caspofungin on drug-resistant Candida and bacteria, Scientific Reports, v. 10, n. 1, p. 17745, (2020).
-
Ou, F., McGoverin, C., Swift, S., Vanholsbeeck, F., Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy, Analytical and Bioanalytical Chemistry, v. 411, p. 3653–3663, (2019).
-
Rosenberg, M., Azevedo, NF., Ivask, A., Propidium iodide staining underestimates viability of adherent bacterial cells, Scientific Reports, v. 9, n. 1, p. 6483, (2019).
-
Freeman, DJ., Falkıner, FR., Keane, CT., New method for detecting slime production by coagulase negative staphylococci, Journal of Clinical Pathology, v. 42, n. 8, p. 872–874, (1989).
-
Kaiser, TDL., Pereira, EM., Dos Santos, KRN., Maciel, ELN., Schuenck, RP., Nunes, APF., Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis, Diagnostic Microbiology and İnfectious Disease, v. 75, n. 3, p. 235–239, (2013).
-
Panda, PS., Chaudhary, U., Dube, SK., Comparison of four different methods for detection of biofilm formation by uropathogens, Indian Journal of Pathology and Microbiology, v. 59, n. 2, p. 177–179, (2016).
-
Hufnagel, D. A., Depas, W. H., & Chapman, M. R., The biology of the Escherichia coli extracellular Matrix, Microbiology spectrum, v. 3, n. 3, p. 10–1128, (2015).
-
Dzionek, A., Dzik, J., Wojcieszyńska, D., Guzik, U., Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells, Catalysts, v. 8, n. 10, p. 434, (2018).
-
Wu, Y. F., Lee, T. Y., Liao, W. T., Chuan, H. H., Cheng, N. C., Cheng, C. M., Rapid detection of biofilm with modified alcian blue staining: in‐vitro protocol improvement and validation with clinical cases, Wound Repair and Regeneration, v. 28, n. 6, p. 834–843, (2020).
-
Barbosa, I., Garcia, S., Barbier-Chassefière, V., Caruelle, J-P., Martelly, I., Papy-García, D., Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies, Glycobiology, v. 13, n. 9, p. 647–653, (2003).
-
Tote, K., Berghe, D Vanden., Maes, L., Cos, P., A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms, Letters İn Applied Microbiology, v. 46, n. 2, p. 249–254, (2008).
-
Ommen, P., Zobek, N., Meyer, RL., Quantification of biofilm biomass by staining: Non-toxic safranin can replace the popular crystal violet. Journal Of Microbiological Methods, v. 141, p. 87–89, (2017).
-
Knobloch, J. K. M., Horstkotte, M. A., Rohde, H., & Mack, D., Evaluation of different detection methods of biofilm formation in Staphylococcus aureus, Medical microbiology and immunology, v. 191, p. 101–106, (2002).
-
Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M., Evaluation of different detection methods of biofilm formation in the clinical isolates, Brazilian journal of infectious diseases, v. 15, p. 305–311, (2011).
-
Crémet, L., Corvec, S., Batard, E., Auger, M., Lopez, I., Pagniez, et al., Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli, Diagnostic microbiology and infectious disease, v. 75, n. 3, p. 252–255, (2013).
-
Walker, JN., Horswıll, AR., A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma, Frontiers İn Cellular And İnfection Microbiology, v. 2, p. 39, (2012).
-
Norton, TA., Thompson, RC., Pope, J., Veltkamp, CJ., Banks, B., Howard, C V., et al., Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms, Aquatic Microbial Ecology, v. 16, n. 2, p. 199–204, (1998).
-
Relucenti, M., Familiari, G., Donfrancesco, O., Taurino, M., Li X, Chen R., et al., Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons, Biology, v. 10, n. 1, p. 51, (2021).
-
Bossù, M., Selan, L., Artini, M., Relucenti, M., Familiari, G., Papa, R., et al., Characterization of Scardovia wiggsiae biofilm by original scanning electron microscopy protocol, Microorganisms, v. 8, n. 6, p. 807, (2020).
-
Chandra, J., Mukherjee, PK., Ghannoum, MA., In vitro growth and analysis of Candida biofilms, Nature Protocols, v. 3, n. 12, p. 1909–1924, (2008).
-
Lage, OM., Ramos, MC., Calisto, R., Almeida, E., Vasconcelos, V., Vicente, F., Current screening methodologies in drug discovery for selected human diseases, Marine Drugs, v. 16, n. 8, p. 279, (2018).
-
Schlafer, S., Meyer, RL., Confocal microscopy imaging of the biofilm matrix, Journal of microbiological methods, v. 138, p. 50–59, (2017).
-
Lenz, AP., Williamson, KS., Pitts, B., Stewart, PS., Franklin, MJ., Localized gene expression in Pseudomonas aeruginosa biofilms, Applied and environmental microbiology, v. 74, n. 14, p. 4463–4471, (2008).
-
Pérez-Osorio, AC., Franklın, MJ., Isolation of RNA and DNA from biofilm samples obtained by laser capture microdissection microscopy, Cold Spring Harbor Protocols, v. 2008, n. 10, p. pdb-prot5065, (2008).
-
Yazdani, R., Oshaghi, M., Havaei, A., Pishva, E., Salehi, R., Sadeghizadeh, M., et al., Detection of icaAD gene and biofilm formation in Staphylococcus aureus isolates from wound infections, Iranian Journal of Public Health, (2006).
-
Magalhães, AP., França, Â., Pereira, MO., Cerca N., RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms, Scientific Reports, v. 9, n. 1, p. 13639, (2019).
-
Pérez-Osorıo, AC., Franklın, M.J., qRT-PCR of microbial biofilms, Cold Spring Harbor Protocols, v. 2008, n. 10, p. pdb-prot5066, (2008).
-
Merrıtt, JH., Kadourı, DE., O’Toole, GA., Growing and analyzing static biofilms, Current protocols in microbiology, v. 22, n. 1, p. 1B – 1, (2011).
-
Sung, K., et al., Methods to grow and measure in vitro static biofilms, (2022).
-
Caputo, P., Di Martino, MC., Perfetto, B., Iovino, F., Donnarumma, G., Use of MALDI-TOF MS to discriminate between biofilm-producer and non-producer strains of Staphylococcus epidermidis, International Journal of Environmental Research and Public Health, v. 15, n. 8, p. 1695, (2019).
-
Pereira, FDES., Bonatto, CC., Lopes, CAP., Pereira, AL., Silva, LP., Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces, Microbial Pathogenesis, v. 86, p. 32–37, (2015).
-
Gaudreau, AM., Labrie, J., Goetz, C., Dufour, S., Jacques, M., Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms, Journal of Microbiological Methods, v. 145, p. 79–81, (2018).
-
Schmıtt, J., Flemmıng, H.-C., FTIR-spectroscopy in microbial and material analysis, International Biodeterioration & Biodegradation, v. 41, n. 1, p. 1–11, (1998).
-
Tugarova, AV., Scheludko, AV., Dyatlova, YA., Filip’echeva, YA., Kamnev, AA., FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245. 1610, Journal of Molecular Structure, v. 1140, p. 142–147, (2017).
-
Quılès, F., Humbert, F., Delille, A., Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 75, n. 2, p. 610–616, (2010).
-
Chirman, D., Pleshko, N., Characterization of bacterial biofilm infections with Fourier transform infrared spectroscopy: A review, Applied Spectroscopy Reviews, v. 56, n. 8–10, p. 673–701, (2021).
-
Sedki, M., Hassan, RYA., Andreescu, S., El-Sherbiny, IM., Online-monitoring of biofilm formation using nanostructured electrode surfaces. Materials Science and Engineering: C, v. 100, p. 178–185, (2019).
-
Ceri, H., Olson, ME., Stremick, C., Read, RR., Morck, D., Buret, A., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, Journal Of Clinical Microbiology, v. 37, n. 6, p. 1771–1776, (1999).
-
Reiferth, V. M., Holtmann, D., Müller, D., Flexible biofilm monitoring device, Wiley Online Library,v.22, n.12, p. 796-802, (2022).
-
Di Domenico, E. G., Toma, L., Provot, C., Ascenzioni, F., Sperduti, I., Prignano, G., et al., Development of an in vitro assay, based on the biofilm ring test®, for rapid profiling of biofilm-growing bacteria, Frontiers in Microbiology, v. 7, p. 1429, (2016).
-
Olivares, E., Badel-Berchoux, S., Provot, C., Jaulhac, B., Prévost, G., Bernardi, T., & Jehl, F .,The BioFilm Ring Test: a rapid method for routine analysis of Pseudomonas aeruginosa biofilm formation kinetics, Journal Of Clinical Microbiology, v. 54, n. 3, p. 657–661, (2016).