Research Article
BibTex RIS Cite

Effect of synthetic fiber on fracture behavior of Ultra High-Performance Concrete

Year 2025, Volume: 27 Issue: 1, 259 - 268, 20.01.2025
https://doi.org/10.25092/baunfbed.1561557

Abstract

In this study, the effects of synthetic fiber use on the fracture behavior of Ultra High-Performance Concrete (UHPC) were experimentally investigated. The notched prism specimens were produced using three UHPC mixtures, containing 0%, 0.5% and 1.0% synthetic fibers by volume, and tested under three-point bending. The results of the experimental study were evaluated in terms of compressive strength, flexural tensile strength, fracture energy and cracking behavior. The results showed that the use of synthetic fibers has a significant effect on the fracture behavior of UHPC. While no significant impact of synthetic fiber use was observed in terms of cracking strength, the post-crack energy absorption capacity significantly increased. The 1.0% volumetric fiber ratio gave better results than the 0.5% ratio for both post-crack strength and ductility.

References

  • Wille, K., El-Tawil, S. ve Naaman, A. E., Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading, Cement and Concrete Composites, 48, 53-66, (2014).
  • Li, S., Jensen, O. M., Wang, Z. ve Yu, Q., Influence of micromechanical property on the rate-dependent flexural strength of ultra-high performance concrete containing coarse aggregates (UHPC-CA), Composites Part B: Engineering, 227, (2021).
  • Gong, J., Ma, Y., Fu, J., Hu, J., Ouyang, X., Zhang, Z. ve Wang H., Utilization of fibers in ultra-high performance concrete: A review, Composites Part B: Engineering, 241, (2022).
  • Shen, X. ve Brühwiler, E., Influence of local fiber distribution on tensile behavior of strain hardening UHPFRC using NDT and DIC, Cement and Concrete Research, 132, 106042, (2020).
  • Bhosale, A., Rasheed, M. A., Prakash, S. S. ve Raju, G., A study on the efficiency of steel vs. synthetic vs. hybrid fibers on fracture behavior of concrete in flexure using acoustic emission, Construction and Building Materials, 199, 256-268, (2019).
  • Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., Abu-obeidah, A., Nassif, H. ve Wang, H., New development of ultra-high-performance concrete (UHPC), Composites Part B, 224, (2021).
  • Yoo, D. -., Shin, W., Chun, B. ve Banthia, N., Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance, Cement and Concrete Research, 133, (2020).
  • Kim, D. J., Naaman, A., ve El-Tawil, S. High tensile strength strain hardening FRC composites with less than 2% fiber content, Proceedings of the Second International Symposium on Ultra High Performance Concrete, 169–176, Germany, (2008).
  • Alberti, M. G., Enfedaque, A. ve Gálvez J. C., On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete, Construction and Building Materials, 55, 274-288, (2014).
  • Zhu, W., Yu, J., Dai, J., Lu, Z. ve Shah, S. P., Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers, Construction and Building Materials,158, 217–227, (2018).
  • Yan, P., Chen, B., Afgan, S., Haque, M. A., Wu, M., ve Han, J.. Experimental research on ductility enhancement of ultra-high performance concrete incorporation with basalt fibre, polypropylene fibre and glass fibre, Construction and Building Materials, 279, 122489, (2021).
  • Neira Medina, A. L., Abellán García, J., ve Torres Castellanos, N., Flexural behavior of environmentally friendly ultra-high-performance concrete with locally available low-cost synthetic fibers, European Journal of Environmental and Civil Engineering, 26, 13, 6281-6304, (2022).
  • Mostofinejad, D., Moosaie, I., Eftekhar, M., ve Hesami, E., Ultra-high performance hybrid polyvinyl alcohol-polypropylene fiber-reinforced cementitious composites with augmented toughness and strain-hardening behavior, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46, 3, 1997-2009, (2022).
  • Dehghanpour, H., Subasi, S., Guntepe, S., Emiroglu, M. ve Marasli, M., Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers, Construction and Building Materials, 328, 127079, (2022).
  • Hasgul, U., Turker, K., Birol, T., & Yavas, A., Flexural behavior of ultra‐high‐performance fiber reinforced concrete beams with low and high reinforcement ratios, Structural Concrete, 19, 6, 1577-1590, (2018).
  • ASTM C1437-20. Standard test method for flow of hydraulic cement mortar. ASTM International, (2020).
  • EN 14651+A1. Test method for Metallic Fibre ConcreteMeasuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual), European Committee for Standardization, Brussels, (2007).
  • Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., ve Najafi, M. H., Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers, Construction and Building Materials, 44, 411-418, (2013).
  • Islam, G. S., ve Gupta, S. D. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete, International Journal of Sustainable Built Environment, 5, 2, 345-354, (2016).
  • Bolat, H., Şimşek, O., Çullu, M., Durmuş, G. ve Cani, Ö., The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete, Composites Part B, 61, 191-8, (2014).
  • Akça, K. R., Çakır, Ö., ve İpek, M. Properties of polypropylene fiber reinforced concrete using recycled aggregates, Construction and Building Materials, 98, 620-630, (2015).
  • Alberti, M., Enfedaque, A. ve Gálvez, J., Improving the reinforcement of polyolefin fiber reinforced concrete for infrastructure applications, Fibers, 3, 4, 504-522, (2015).
  • Naaman, A. E., ve Reinhardt, H. W., Setting the stage: Toward performance based classification of FRC composites. In High Performance Fiber Reinforced Cement Composites, 4, 1-4, June, (2003).
  • RILEM 50-FMC Committee (Fracture Mechanics of Concrete). (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106) 285-290.

Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi

Year 2025, Volume: 27 Issue: 1, 259 - 268, 20.01.2025
https://doi.org/10.25092/baunfbed.1561557

Abstract

Bu çalışmada sentetik lifin Ultra Yüksek Performanslı Beton’un (UYPB) kırılma davranışı üzerindeki etkileri deneysel olarak incelenmiştir. Çalışmada hacimce %0, %0.5 ve %1.0 oranlarında sentetik lif içeren toplam üç adet UYPB karışımı kullanılarak çentikli prizma numuneler üretilmiş ve üç noktalı eğilme altında test edilmiştir. Deneysel çalışmanın sonuçları basınç dayanımı, eğilmede çekme dayanımı, kırılma enerjisi ve çatlak davranışı parametreleri açısından değerlendirilmiştir. Elde edilen sonuçlar sentetik lif kullanımının UYPB’un kırılma davranışında etkili olduğunu göstermiştir. Çatlama dayanımı açısından sentetik lif kullanımının belirgin bir etkisi gözlemlenmezken, çatlak sonrası enerji sönümleme kapasitesini önemli şekilde arttırdığı belirlenmiştir. Çalışmada incelenen lif oranları kendi içerisinde değerlendirildiğinde hacimce %1.0 sentetik lif kullanımının hem çatlak sonrası dayanımda hem de süneklikte %0.5 lif oranına göre çok daha iyi sonuç verdiği görülmüştür.

References

  • Wille, K., El-Tawil, S. ve Naaman, A. E., Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading, Cement and Concrete Composites, 48, 53-66, (2014).
  • Li, S., Jensen, O. M., Wang, Z. ve Yu, Q., Influence of micromechanical property on the rate-dependent flexural strength of ultra-high performance concrete containing coarse aggregates (UHPC-CA), Composites Part B: Engineering, 227, (2021).
  • Gong, J., Ma, Y., Fu, J., Hu, J., Ouyang, X., Zhang, Z. ve Wang H., Utilization of fibers in ultra-high performance concrete: A review, Composites Part B: Engineering, 241, (2022).
  • Shen, X. ve Brühwiler, E., Influence of local fiber distribution on tensile behavior of strain hardening UHPFRC using NDT and DIC, Cement and Concrete Research, 132, 106042, (2020).
  • Bhosale, A., Rasheed, M. A., Prakash, S. S. ve Raju, G., A study on the efficiency of steel vs. synthetic vs. hybrid fibers on fracture behavior of concrete in flexure using acoustic emission, Construction and Building Materials, 199, 256-268, (2019).
  • Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., Abu-obeidah, A., Nassif, H. ve Wang, H., New development of ultra-high-performance concrete (UHPC), Composites Part B, 224, (2021).
  • Yoo, D. -., Shin, W., Chun, B. ve Banthia, N., Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance, Cement and Concrete Research, 133, (2020).
  • Kim, D. J., Naaman, A., ve El-Tawil, S. High tensile strength strain hardening FRC composites with less than 2% fiber content, Proceedings of the Second International Symposium on Ultra High Performance Concrete, 169–176, Germany, (2008).
  • Alberti, M. G., Enfedaque, A. ve Gálvez J. C., On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete, Construction and Building Materials, 55, 274-288, (2014).
  • Zhu, W., Yu, J., Dai, J., Lu, Z. ve Shah, S. P., Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers, Construction and Building Materials,158, 217–227, (2018).
  • Yan, P., Chen, B., Afgan, S., Haque, M. A., Wu, M., ve Han, J.. Experimental research on ductility enhancement of ultra-high performance concrete incorporation with basalt fibre, polypropylene fibre and glass fibre, Construction and Building Materials, 279, 122489, (2021).
  • Neira Medina, A. L., Abellán García, J., ve Torres Castellanos, N., Flexural behavior of environmentally friendly ultra-high-performance concrete with locally available low-cost synthetic fibers, European Journal of Environmental and Civil Engineering, 26, 13, 6281-6304, (2022).
  • Mostofinejad, D., Moosaie, I., Eftekhar, M., ve Hesami, E., Ultra-high performance hybrid polyvinyl alcohol-polypropylene fiber-reinforced cementitious composites with augmented toughness and strain-hardening behavior, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46, 3, 1997-2009, (2022).
  • Dehghanpour, H., Subasi, S., Guntepe, S., Emiroglu, M. ve Marasli, M., Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers, Construction and Building Materials, 328, 127079, (2022).
  • Hasgul, U., Turker, K., Birol, T., & Yavas, A., Flexural behavior of ultra‐high‐performance fiber reinforced concrete beams with low and high reinforcement ratios, Structural Concrete, 19, 6, 1577-1590, (2018).
  • ASTM C1437-20. Standard test method for flow of hydraulic cement mortar. ASTM International, (2020).
  • EN 14651+A1. Test method for Metallic Fibre ConcreteMeasuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual), European Committee for Standardization, Brussels, (2007).
  • Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., ve Najafi, M. H., Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers, Construction and Building Materials, 44, 411-418, (2013).
  • Islam, G. S., ve Gupta, S. D. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete, International Journal of Sustainable Built Environment, 5, 2, 345-354, (2016).
  • Bolat, H., Şimşek, O., Çullu, M., Durmuş, G. ve Cani, Ö., The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete, Composites Part B, 61, 191-8, (2014).
  • Akça, K. R., Çakır, Ö., ve İpek, M. Properties of polypropylene fiber reinforced concrete using recycled aggregates, Construction and Building Materials, 98, 620-630, (2015).
  • Alberti, M., Enfedaque, A. ve Gálvez, J., Improving the reinforcement of polyolefin fiber reinforced concrete for infrastructure applications, Fibers, 3, 4, 504-522, (2015).
  • Naaman, A. E., ve Reinhardt, H. W., Setting the stage: Toward performance based classification of FRC composites. In High Performance Fiber Reinforced Cement Composites, 4, 1-4, June, (2003).
  • RILEM 50-FMC Committee (Fracture Mechanics of Concrete). (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106) 285-290.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Structural Engineering
Journal Section Research Article
Authors

Tamer Birol 0000-0003-2428-6202

Submission Date October 10, 2024
Acceptance Date December 14, 2024
Early Pub Date January 16, 2025
Publication Date January 20, 2025
Published in Issue Year 2025 Volume: 27 Issue: 1

Cite

APA Birol, T. (2025). Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 259-268. https://doi.org/10.25092/baunfbed.1561557
AMA Birol T. Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. January 2025;27(1):259-268. doi:10.25092/baunfbed.1561557
Chicago Birol, Tamer. “Sentetik Lifin Ultra Yüksek Performanslı Beton’un Kırılma Davranışına Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 1 (January 2025): 259-68. https://doi.org/10.25092/baunfbed.1561557.
EndNote Birol T (January 1, 2025) Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 1 259–268.
IEEE T. Birol, “Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 1, pp. 259–268, 2025, doi: 10.25092/baunfbed.1561557.
ISNAD Birol, Tamer. “Sentetik Lifin Ultra Yüksek Performanslı Beton’un Kırılma Davranışına Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/1 (January2025), 259-268. https://doi.org/10.25092/baunfbed.1561557.
JAMA Birol T. Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;27:259–268.
MLA Birol, Tamer. “Sentetik Lifin Ultra Yüksek Performanslı Beton’un Kırılma Davranışına Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 1, 2025, pp. 259-68, doi:10.25092/baunfbed.1561557.
Vancouver Birol T. Sentetik lifin Ultra Yüksek Performanslı Beton’un kırılma davranışına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;27(1):259-68.