Research Article
BibTex RIS Cite

Hat-genişliği parametresinin 3B yazdırılmış PLA parçaların çekme mukavemeti, yüzey profili ve yazdırma süresi üzerindeki etkisi

Year 2025, Volume: 27 Issue: 2, 626 - 638, 15.07.2025
https://doi.org/10.25092/baunfbed.1659472

Abstract

Bu çalışma, hat-genişliği değerlerinin 3B (üç boyutlu) yazdırılmış PLA (polilaktik asit) parçalarının özellikleri üzerindeki etkisini incelemektedir. Parçaların 3B yazdırma, düşük maliyetli kartezyen tip FFF (eriyik filament üretimi) masaüstü 3B yazıcı kullanılarak gerçekleştirildi. PLA parçaları yazdırmak için 0,6 mm çapında pirinç nozul kullanıldı. 0,6 mm ile 1,2 mm arasında hat genişliği değerlerine sahip parçalar basıldı ve hat genişliği değerlerinin mekanik özellikler ve yazdırma süresi üzerindeki etkisi incelendi. 3B yazdırılmış parçaların mekanik özellikleri, çekme test cihazı (Zwick/Roell, Z250) kullanılarak belirlendi. 3B yazdırılmış numunelerin mikro yapıları optik mikroskop (Leica, DM 2500) kullanılarak incelendi. 3D yazdırma işlemi sırasında her parça için yazdırma süresi kaydedildi. Parçaların yüzey profilleri yüzey pürüzlülük test cihazı (Mitutoyo SJ-210) kullanılarak incelendi. Mikroyapısal incelemeler, boşlukların bitişik depozitlenmiş hatlar arasında oluştuğunu ve boşluk içeriğinin 1,0 mm'ye kadar artan hat genişliği değeriyle %5,89'dan %5,13'e düştüğünü gösterdi. Yüzey pürüzlülük parametresi Ra, artan hat genişliğiyle 5.11±0.21 µm’den 9.29±1.12 µm'ye yükseldi. 3B yazdırılmış numunelerin çekme mukavemeti, bitişik u-dönüşü bölümleri arasındaki boşlukların varlığı nedeniyle artan hat genişliğiyle azalma gösterdi. Çekme mukavemeti değerleri, 0,6 mm ve 1,2 mm hat genişliği değerleriyle yazdırılmış numuneler için sırasıyla 58.52±1.93 MPa ve 46.54±1.18 MPa olarak belirlendi. Çekme kırılma yüzeyinin SEM görüntüleri, yazdırılmış numunelerin ana hasar mekanizmasının, hatlar arası bağların kırılması yerine depozitlenmiş hatların kopması olduğunu gösterdi.

References

  • Türkoğlu, T., Functional grading of polymer triply periodic minimal surface structures for enhanced compressive performance and lightweight design in additive manufacturing. Journal of Advances in Manufacturing Engineering, 5(2), 94-102, (2024).
  • Kim, D. B., Witherell, P., Lipman, R., & Feng, S. C., Streamlining the additive manufacturing digital spectrum: A systems approach. Additive manufacturing, 5, 20-30, (2015).
  • Güler, S., Mechanical, Thermal, and Photocatalytic Properties of TiO₂/ZnO Hybrid Composites Fabricated via Additive Manufacturing. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 149-158, (2025).
  • Jadhav, A., & Jadhav, V. S., A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094-2099, (2022).
  • Kantaros, A., Soulis, E., Petrescu, F. I. T., & Ganetsos, T., Advanced composite materials utilized in FDM/FFF 3D printing manufacturing processes: the case of filled filaments. Materials, 16(18), 6210, (2023).
  • Osswald, T. A., Puentes, J., & Kattinger, J., Fused filament fabrication melting model. Additive Manufacturing, 22, 51-59, (2018).
  • Arockiam, A. J., Subramanian, K., Padmanabhan, R. G., Selvaraj, R., Bagal, D. K., & Rajesh, S., A review on PLA with different fillers used as a filament in 3D printing. Materials Today: Proceedings, 50, 2057-2064, (2022).
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núnez, P. J., Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143-157, (2017).
  • Kuznetsov, V. E., Solonin, A. N., Urzhumtsev, O. D., Schilling, R., & Tavitov, A. G., Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers, 10(3), 313, (2018).
  • Molina, A., & Acosta-Sullcahuamán, J., Effect of the Process Parameters on the Mechanical Properties of 3D-Printed Specimens Fabricated by Material Extrusion 3D Printing. Engineering Proceedings, 83(1), 1, (2025).
  • Bhosale, V., Gaikwad, P., Dhere, S., Sutar, C., & Raykar, S. J., Analysis of process parameters of 3D printing for surface finish, printing time and tensile strength. Materials Today: Proceedings, 59, 841-846, (2022).
  • Mulcahy, N., O'Sullivan, K. J., O'Sullivan, A., & O'Sullivan, L., Preliminary assessment on the effects of line width, layer height and orientation on strength and print time for FDM printing of total contact casts for the treatment of diabetic foot ulcers. Annals of 3D Printed Medicine, 11, 100115, (2023).
  • Kim, M. K., Lee, I. H., & Kim, H. C., Effect of fabrication parameters on surface roughness of FDM parts. International Journal of Precision Engineering and Manufacturing, 19, 137-142, (2018).
  • Butt, J., Bhaskar, R., & Mohaghegh, V., Analysing the effects of layer heights and line widths on FFF-printed thermoplastics. The International Journal of Advanced Manufacturing Technology, 121(11), 7383-7411, (2022).
  • John, P., Komma, V. R., & Bhore, S. P., Development of MATLAB code for tool path data extraction from the G code of the fused filament fabrication (FFF) parts. Engineering Research Express, 5(2), 025018, (2023).
  • Chen, J. M., Tseng, Y. Y., Lee, D., Lin, Y. T., Lin, S. H., Lee, T. Y., ... & Ito, H., A robust experimental model to explore the three-dimensional printing of polylactide parts: Solution versus melt extrusion. Applied Sciences, 10(2), 509, (2020).
  • Suryanegara, L., Nakagaito, A. N., & Yano, H., The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology, 69(7-8), 1187-1192, (2009).
  • Mysiukiewicz, O., & Barczewski, M., Crystallization of polylactide-based green composites filled with oil-rich waste fillers. Journal of Polymer Research, 27, 1-17, (2020).
  • Shuhua, W., Qiaoli, X., Fen, L., Jinming, D., Husheng, J., & Bingshe, X., Preparation and properties of cellulose-based carbon microsphere/poly (lactic acid) composites. Journal of Composite Materials, 48(11), 1297-1302, (2014).
  • Agustin, M. B., Nakatsubo, F., & Yano, H., The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose, 23, 451-464, (2016).
  • Nasirov, A., Gupta, A., Hasanov, S., & Fidan, I., Three-scale asymptotic homogenization of short fiber reinforced additively manufactured polymer composites. Composites Part B: Engineering, 202, 108269, (2020).
  • Alharbi, M., Kong, I., & Patel, V. I., Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis. Applied Adhesion Science, 8, 1-10, (2020).

Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts

Year 2025, Volume: 27 Issue: 2, 626 - 638, 15.07.2025
https://doi.org/10.25092/baunfbed.1659472

Abstract

This study investigates the effect of line-width values on the properties of 3D (three dimensional) printed PLA (polylactic acid) parts. 3D printing of parts was carried out by using low-cost cartesian type FFF (fused filament fabrication) desktop 3D printer. Brass nozzle with a diameter of 0.6 mm was used to print PLA parts. Parts having line-width values of 0.6 mm to 1.2 mm were printed and the effect of line-width values on the mechanical properties and printing time was investigated. Mechanical properties of 3D printed parts were determined by using tensile testing device (Zwick/Roell, Z250). Microstructures of 3D printed samples were investigated by using optical microscope (Leica, DM 2500). Printing time for each part was recorded during 3D printing process. Surface profiles of parts were investigated by using surface roughness tester (Mitutoyo SJ-210). Microstructural investigations showed that the voids were formed between adjacent deposited lines and the void content decreased from 5.89% to 5.13% with increasing line-width value up to 1.0 mm. Surface roughness parameter of Ra increased from 5.11±0.21 µm to 9.29±1.12 µm with increasing line-width. Tensile strength of 3D printed specimens showed a slight decrease with increasing line-width due to the presence of voids between adjacent u-turn sections. The tensile strength values were determined as 58.52±1.93 MPa and 46.54±1.18 MPa for specimens printed with line-width values of 0.6 mm and 1.2 mm respectively. SEM images of tensile fracture surface demonstrated that the main failure mechanism of the printed specimens was the rupture of deposited lines instead of fracture of inter-line bonding.

References

  • Türkoğlu, T., Functional grading of polymer triply periodic minimal surface structures for enhanced compressive performance and lightweight design in additive manufacturing. Journal of Advances in Manufacturing Engineering, 5(2), 94-102, (2024).
  • Kim, D. B., Witherell, P., Lipman, R., & Feng, S. C., Streamlining the additive manufacturing digital spectrum: A systems approach. Additive manufacturing, 5, 20-30, (2015).
  • Güler, S., Mechanical, Thermal, and Photocatalytic Properties of TiO₂/ZnO Hybrid Composites Fabricated via Additive Manufacturing. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 149-158, (2025).
  • Jadhav, A., & Jadhav, V. S., A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094-2099, (2022).
  • Kantaros, A., Soulis, E., Petrescu, F. I. T., & Ganetsos, T., Advanced composite materials utilized in FDM/FFF 3D printing manufacturing processes: the case of filled filaments. Materials, 16(18), 6210, (2023).
  • Osswald, T. A., Puentes, J., & Kattinger, J., Fused filament fabrication melting model. Additive Manufacturing, 22, 51-59, (2018).
  • Arockiam, A. J., Subramanian, K., Padmanabhan, R. G., Selvaraj, R., Bagal, D. K., & Rajesh, S., A review on PLA with different fillers used as a filament in 3D printing. Materials Today: Proceedings, 50, 2057-2064, (2022).
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núnez, P. J., Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143-157, (2017).
  • Kuznetsov, V. E., Solonin, A. N., Urzhumtsev, O. D., Schilling, R., & Tavitov, A. G., Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers, 10(3), 313, (2018).
  • Molina, A., & Acosta-Sullcahuamán, J., Effect of the Process Parameters on the Mechanical Properties of 3D-Printed Specimens Fabricated by Material Extrusion 3D Printing. Engineering Proceedings, 83(1), 1, (2025).
  • Bhosale, V., Gaikwad, P., Dhere, S., Sutar, C., & Raykar, S. J., Analysis of process parameters of 3D printing for surface finish, printing time and tensile strength. Materials Today: Proceedings, 59, 841-846, (2022).
  • Mulcahy, N., O'Sullivan, K. J., O'Sullivan, A., & O'Sullivan, L., Preliminary assessment on the effects of line width, layer height and orientation on strength and print time for FDM printing of total contact casts for the treatment of diabetic foot ulcers. Annals of 3D Printed Medicine, 11, 100115, (2023).
  • Kim, M. K., Lee, I. H., & Kim, H. C., Effect of fabrication parameters on surface roughness of FDM parts. International Journal of Precision Engineering and Manufacturing, 19, 137-142, (2018).
  • Butt, J., Bhaskar, R., & Mohaghegh, V., Analysing the effects of layer heights and line widths on FFF-printed thermoplastics. The International Journal of Advanced Manufacturing Technology, 121(11), 7383-7411, (2022).
  • John, P., Komma, V. R., & Bhore, S. P., Development of MATLAB code for tool path data extraction from the G code of the fused filament fabrication (FFF) parts. Engineering Research Express, 5(2), 025018, (2023).
  • Chen, J. M., Tseng, Y. Y., Lee, D., Lin, Y. T., Lin, S. H., Lee, T. Y., ... & Ito, H., A robust experimental model to explore the three-dimensional printing of polylactide parts: Solution versus melt extrusion. Applied Sciences, 10(2), 509, (2020).
  • Suryanegara, L., Nakagaito, A. N., & Yano, H., The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology, 69(7-8), 1187-1192, (2009).
  • Mysiukiewicz, O., & Barczewski, M., Crystallization of polylactide-based green composites filled with oil-rich waste fillers. Journal of Polymer Research, 27, 1-17, (2020).
  • Shuhua, W., Qiaoli, X., Fen, L., Jinming, D., Husheng, J., & Bingshe, X., Preparation and properties of cellulose-based carbon microsphere/poly (lactic acid) composites. Journal of Composite Materials, 48(11), 1297-1302, (2014).
  • Agustin, M. B., Nakatsubo, F., & Yano, H., The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose, 23, 451-464, (2016).
  • Nasirov, A., Gupta, A., Hasanov, S., & Fidan, I., Three-scale asymptotic homogenization of short fiber reinforced additively manufactured polymer composites. Composites Part B: Engineering, 202, 108269, (2020).
  • Alharbi, M., Kong, I., & Patel, V. I., Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis. Applied Adhesion Science, 8, 1-10, (2020).
There are 22 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Material Characterization, Material Production Technologies, Polymers and Plastics
Journal Section Research Articles
Authors

Ahmet Çağrı Kılınç 0000-0003-1705-5676

Early Pub Date July 10, 2025
Publication Date July 15, 2025
Submission Date March 17, 2025
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 27 Issue: 2

Cite

APA Kılınç, A. Ç. (2025). Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 626-638. https://doi.org/10.25092/baunfbed.1659472
AMA Kılınç AÇ. Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. July 2025;27(2):626-638. doi:10.25092/baunfbed.1659472
Chicago Kılınç, Ahmet Çağrı. “Effect of Line-Width Parameter on the Tensile Strength, Surface Profile and Printing Time of 3D Printed PLA Parts”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 2 (July 2025): 626-38. https://doi.org/10.25092/baunfbed.1659472.
EndNote Kılınç AÇ (July 1, 2025) Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 626–638.
IEEE A. Ç. Kılınç, “Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 2, pp. 626–638, 2025, doi: 10.25092/baunfbed.1659472.
ISNAD Kılınç, Ahmet Çağrı. “Effect of Line-Width Parameter on the Tensile Strength, Surface Profile and Printing Time of 3D Printed PLA Parts”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (July2025), 626-638. https://doi.org/10.25092/baunfbed.1659472.
JAMA Kılınç AÇ. Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;27:626–638.
MLA Kılınç, Ahmet Çağrı. “Effect of Line-Width Parameter on the Tensile Strength, Surface Profile and Printing Time of 3D Printed PLA Parts”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 2, 2025, pp. 626-38, doi:10.25092/baunfbed.1659472.
Vancouver Kılınç AÇ. Effect of line-width parameter on the tensile strength, surface profile and printing time of 3D printed PLA parts. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;27(2):626-38.