Research Article
BibTex RIS Cite

Investigation of the effects of selected drugs on the lactonase activity of the paraoxonase enzyme

Year 2026, Volume: 28 Issue: 1, 72 - 80, 20.01.2026
https://doi.org/10.25092/baunfbed.1827638

Abstract

Paraoxonase 1 (PON1) is a member of the PON family, which possesses essential functions in numerous metabolic processes due to its detoxification and antioxidant properties. In addition, through its lactonase activity, PON1 hydrolyzes lactone-based signaling molecules produced by bacteria, thereby inhibiting their quorum sensing (QS) mechanisms. One of the most critical outcomes of these mechanisms is biofilm formation, a clinically significant problem. Therefore, the lactonase activity of PON1 makes it a potential antibiofilm agent. In this study, hPON1 was purified from human serum for the first time using Sepharose 4B–L-tyrosine-1-naphthylamine gel synthesized by our team, employing hydrophobic interaction chromatography. The inhibitory effects of Rifamycin and Teicoplanin on the enzyme’s lactonase activity were investigated in vitro, and both antibiotics were found to significantly inhibit the enzyme. The calculated IC₅₀ values were 42.81 µg/mL for Rifamycin and 42.89 µg/mL for Teicoplanin. These findings suggest that, in addition to their bactericidal effects, these antibiotics may also weaken hPON1-mediated antibiofilm mechanisms.In this study, hPON1 was purified from human serum for the first time using Sepharose 4B–L-tyrosine-1-naphthylamine gel synthesized by our team, employing hydrophobic interaction chromatography. The inhibitory effects of Rifamycin and Teicoplanin on the enzyme’s lactonase activity were investigated in vitro, and both antibiotics were found to significantly inhibit the enzyme. The calculated IC₅₀ values were 42.81 µg/mL for Rifamycin and 42.89 µg/mL for Teicoplanin. These findings suggest that, in addition to their bactericidal effects, these antibiotics may also weaken hPON1-mediated antibiofilm mechanisms.

Supporting Institution

TÜBİTAK

Project Number

125Z138

References

  • Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R.C., and Arenas, J., Biofilms as promoters of bacterial antibiotic resistance and tolerance, Antibiotics, 10(1), 3, (2020).
  • Khelissa, S.O., Abdallah, M., Jama, C., Faille, C., and Chihib, N.-E., Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence, Journal of Materials and Environmental Science, 8(9), 3326–3346, (2017).
  • Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P., and Hall-Stoodley, L., Targeting microbial biofilms: current and prospective therapeutic strategies, Nature Reviews Microbiology, 15(12), 740–755, (2017).
  • Sharma, A., Singh, P., Sarmah, B.K., and Nandi, S.P., Quorum sensing: its role in microbial social networking, Research in Microbiology, 171(5–6), 159–164, (2020).
  • Brauner, A., Fridman, O., Gefen, O., and Balaban, N.Q., Distinguishing between resistance, tolerance and persistence to antibiotic treatment, Nature Reviews Microbiology, 14(5), 320–330, (2016).
  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O., Antibiotic resistance of bacterial biofilms, International Journal of Antimicrobial Agents, 35(4), 322–332, (2010).
  • Hemmati, F., Salehi, R., Ghotaslou, R., Samadi Kafil, H., Hasani, A., et al., Quorum quenching: A potential target for antipseudomonal therapy, Infection and Drug Resistance, 2989–3005, (2020).
  • Defoirdt, T., Quorum-sensing systems as targets for antivirulence therapy, Trends in Microbiology, 26(4), 313–328, (2018).
  • Kalaiarasan, E., Thirumalaswamy, K., Harish, B.N., Gnanasambandam, V., Sali, V.K., et al., Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors, Microbial Pathogenesis, 111, 99–107, (2017).
  • Aharoni, A., Gaidukov, L., Yagur, S., Toker, L., Silman, I., et al., Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization, Proceedings of the National Academy of Sciences, 101(2), 482–487, (2004).
  • Draganov, D.I., Stetson, P.L., Watson, C.E., Billecke, S.S., and La Du, B.N., Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation, Journal of Biological Chemistry, 275(43), 33435–33442, (2000).
  • Deakin, S., Leviev, I., Gomaraschi, M., Calabresi, L., Franceschini, G., et al., Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism, Journal of Biological Chemistry, 277(6), 4301–4308, (2002).
  • Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B.S., et al., Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex, The Journal of Clinical Investigation, 123(9), 3815–3828, (2013).
  • Gökçe, B., Investigation effects of some anthraquinones on human paraoxonase 1 (hPON1), Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 546–553, (2019).
  • Ergün, A. and Çiçek, B., PON1 enzimi üzerine DT-15-Crown-5 taç eterinin etkisinin araştırılması, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 13–19, (2020).
  • Blaha-Nelson, D., Krüger, D.M., Szeler, K., Ben-David, M., and Kamerlin, S.C.L., Active site hydrophobicity and the convergent evolution of paraoxonase activity in structurally divergent enzymes: The case of serum paraoxonase 1, Journal of the American Chemical Society, 139(3), 1155–1167, (2017).
  • Vitarius, J.A. and Sultatos, L.G., The role of calcium in the hydrolysis of the organophosphate paraoxon by human serum A-esterase, Life Sciences, 56(2), 125–134, (1994).
  • Shunmoogam, N., Naidoo, P., and Chilton, R., Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance, Vascular Health and Risk Management, 14, 137–143, (2018).
  • Navab, M., Imes, S.S., Hama, S.Y., Hough, G.P., Ross, L.A., et al., Monocyte transmigration induced by modification of low density lipoprotein is abolished by high density lipoprotein, Journal of Clinical Investigation, 88(6), 2039–2046, (1991).
  • Shih, D.M., Gu, L., Xia, Y.R., Navab, M., Li, W.F., et al., Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis, Nature, 394(6690), 284–287, (1998).
  • Yılmaz, A. and Dilek, E., Antibiotics used in patients after surgery and effects of human serum paraoxonase-I (PON1) enzyme activity, Protein and Peptide Letters, 26(3), 215–220, (2019).
  • Söyüt, H., Kaya, E.D., and Beydemir, Ş., Impact of antibacterial drugs on human serum paraoxonase-1 (hPON1) activity: an in vitro study, Asian Pacific Journal of Tropical Biomedicine, 4(8), 603–609, (2014).
  • Soyut, H., Inhibition effects of commonly used some antibacterial and antiviral drugs on purified human serum paraoxonase-1 (hPON1), International Journal of Chemistry and Technology, 3(2), 146–150, (2019).
  • Dilek, E.B., Küfrevioğlu, Ö.İ., and Beydemir, Ş., Impacts of some antibiotics on human serum paraoxonase 1 activity, Journal of Enzyme Inhibition and Medicinal Chemistry, 28(4), 758–764, (2013).
  • Türkeş, C., Söyüt, H., and Beydemir, Ş., Human serum paraoxonase-1 (hPON1): In vitro inhibition effects of several antibiotics, Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 622–628, (2015).
  • Kockar, F., Sinan, S., Yildirim, H., and Arslan, O., Differential effects of some antibiotics on paraoxonase enzyme activity in human hepatoma cells (HepG2), Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5), 715–719, (2010).
  • Sinan, S., Kockar, F., Gencer, N., Yildirim, H., and Arslan, O., Amphenicol and macrolide antibiotics inhibit paraoxonase activity in human serum and HepG2 cells in vitro, Biochemistry (Moscow), 71(1), 46–50, (2006).
  • Sinan, S., Kockar, F., Gencer, N., Yildirim, H., and Arslan, O., Effects of some antibiotics on paraoxonase from human serum in vitro and mouse serum/liver in vivo, Biological & Pharmaceutical Bulletin, 29(8), 1559–1563, (2006).
  • Kosaka, T., Yamaguchi, M., Motomura, T., and Mizuno, K., Relationship between atherosclerosis and paraoxonase or homocysteine thiolactonase activity in type 2 diabetes mellitus, Clinica Chimica Acta, 359(1–2), 156–162, (2005).
  • Ergün, A., Yüksel, H., Arslan, M., and Arslan, O., Investigation of the effects of some drugs on sheep Paraoxonase-1, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 483–488, (2023).
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227(5259), 680–685, (1970).
  • Renz, N., Trampuz, A., and Zimmerli, W., Controversy about the role of rifampin in biofilm infections, Antibiotics, 10(2), (2021).
  • Szczuka, E., Grabska, K., and Kaznowski, A., In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms, Current Microbiology, 71(2), 184–189, (2015).
  • Sato, Y., Hatayama, N., Tanzawa, S., Kimura, Y., Wakabayashi, Y., et al., Staphylococcus haemolyticus attenuates antibacterial effect of teicoplanin via aggregates and biofilms, Microbial Pathogenesis, 180, 106152, (2023).
  • Camps, J., Iftimie, S., García-Heredia, A., Castro, A., and Joven, J., Paraoxonases and infectious diseases, Clinical Biochemistry, 50(13–14), 804–811, (2017).
  • Chen, F., Gao, Y., Chen, X., Yu, Z., and Li, X., Quorum quenching enzymes and applications for blocking quorum sensing-dependent infection, International Journal of Molecular Sciences, 14(9), 17477–17500, (2013).
  • Chun, C.K., Ozer, E.A., Welsh, M.J., Zabner, J., and Greenberg, E.P., Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia, Proceedings of the National Academy of Sciences, 101(10), 3587–3590, (2004).
  • Gençer, N. and Arslan, O., Purification of human PON1 Q192 and R192 isoenzymes and investigation of metal inhibition, Journal of Chromatography B, 877(3), 134–140, (2009).

Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması

Year 2026, Volume: 28 Issue: 1, 72 - 80, 20.01.2026
https://doi.org/10.25092/baunfbed.1827638

Abstract

Paraoksonaz 1 (PON1), detoksifikasyon ve antioksidan özellikleri ile birçok metabolik süreçlerde önemli fonksiyonlara sahip PON ailesinin bir üyesidir. Ayrıca PON1, laktonaz aktivitesi aracılığıyla bakteriler tarafından üretilen lakton yapısındaki sinyal moleküllerini hidrolize ederek onların quorum sensing (QS) mekanizmalarının inhibisyonuna sebep olur. Bu mekanizmaların en kritik çıktılarından biri, klinik açıdan ciddi bir problem olan biyofilm oluşumudur. Bu nedenle PON1’in laktonaz aktivitesi, enzimi potansiyel bir anti-biyofilm ajanı haline getirmektedir. Bu çalışmada, ilk kez tarafımızca sentezlenen Sepharose 4B–L-tirozin-1-naftilamin jeli kullanılarak insan serumundan hPON1 enzimi hidrofobik etkileşim kromatografisi ile saflaştırılmıştır. Enzimin laktonaz aktivitesi üzerine Rifamisin ve Teikoplanin etken maddelerinin inhibisyon etkileri in vitro olarak araştırılmış ve her iki antibiyotiğin de enzimi belirli düzeyde inhibe ettiği görülmüştür. Elde edilen IC₅₀ değerleri; Rifamisin için 42.81 µg/mL, Teikoplanin için ise 42.89 µg/mL olarak hesaplanmıştır. Bulgular, bu antibiyotiklerin bakterisidal etkilerinin yanı sıra hPON1 aracılı antibiyofilm mekanizmalarını da zayıflatabileceğini düşündürmektedir.

Supporting Institution

TÜBİTAK

Project Number

125Z138

References

  • Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R.C., and Arenas, J., Biofilms as promoters of bacterial antibiotic resistance and tolerance, Antibiotics, 10(1), 3, (2020).
  • Khelissa, S.O., Abdallah, M., Jama, C., Faille, C., and Chihib, N.-E., Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence, Journal of Materials and Environmental Science, 8(9), 3326–3346, (2017).
  • Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P., and Hall-Stoodley, L., Targeting microbial biofilms: current and prospective therapeutic strategies, Nature Reviews Microbiology, 15(12), 740–755, (2017).
  • Sharma, A., Singh, P., Sarmah, B.K., and Nandi, S.P., Quorum sensing: its role in microbial social networking, Research in Microbiology, 171(5–6), 159–164, (2020).
  • Brauner, A., Fridman, O., Gefen, O., and Balaban, N.Q., Distinguishing between resistance, tolerance and persistence to antibiotic treatment, Nature Reviews Microbiology, 14(5), 320–330, (2016).
  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O., Antibiotic resistance of bacterial biofilms, International Journal of Antimicrobial Agents, 35(4), 322–332, (2010).
  • Hemmati, F., Salehi, R., Ghotaslou, R., Samadi Kafil, H., Hasani, A., et al., Quorum quenching: A potential target for antipseudomonal therapy, Infection and Drug Resistance, 2989–3005, (2020).
  • Defoirdt, T., Quorum-sensing systems as targets for antivirulence therapy, Trends in Microbiology, 26(4), 313–328, (2018).
  • Kalaiarasan, E., Thirumalaswamy, K., Harish, B.N., Gnanasambandam, V., Sali, V.K., et al., Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors, Microbial Pathogenesis, 111, 99–107, (2017).
  • Aharoni, A., Gaidukov, L., Yagur, S., Toker, L., Silman, I., et al., Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization, Proceedings of the National Academy of Sciences, 101(2), 482–487, (2004).
  • Draganov, D.I., Stetson, P.L., Watson, C.E., Billecke, S.S., and La Du, B.N., Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation, Journal of Biological Chemistry, 275(43), 33435–33442, (2000).
  • Deakin, S., Leviev, I., Gomaraschi, M., Calabresi, L., Franceschini, G., et al., Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism, Journal of Biological Chemistry, 277(6), 4301–4308, (2002).
  • Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B.S., et al., Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex, The Journal of Clinical Investigation, 123(9), 3815–3828, (2013).
  • Gökçe, B., Investigation effects of some anthraquinones on human paraoxonase 1 (hPON1), Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 546–553, (2019).
  • Ergün, A. and Çiçek, B., PON1 enzimi üzerine DT-15-Crown-5 taç eterinin etkisinin araştırılması, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 13–19, (2020).
  • Blaha-Nelson, D., Krüger, D.M., Szeler, K., Ben-David, M., and Kamerlin, S.C.L., Active site hydrophobicity and the convergent evolution of paraoxonase activity in structurally divergent enzymes: The case of serum paraoxonase 1, Journal of the American Chemical Society, 139(3), 1155–1167, (2017).
  • Vitarius, J.A. and Sultatos, L.G., The role of calcium in the hydrolysis of the organophosphate paraoxon by human serum A-esterase, Life Sciences, 56(2), 125–134, (1994).
  • Shunmoogam, N., Naidoo, P., and Chilton, R., Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance, Vascular Health and Risk Management, 14, 137–143, (2018).
  • Navab, M., Imes, S.S., Hama, S.Y., Hough, G.P., Ross, L.A., et al., Monocyte transmigration induced by modification of low density lipoprotein is abolished by high density lipoprotein, Journal of Clinical Investigation, 88(6), 2039–2046, (1991).
  • Shih, D.M., Gu, L., Xia, Y.R., Navab, M., Li, W.F., et al., Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis, Nature, 394(6690), 284–287, (1998).
  • Yılmaz, A. and Dilek, E., Antibiotics used in patients after surgery and effects of human serum paraoxonase-I (PON1) enzyme activity, Protein and Peptide Letters, 26(3), 215–220, (2019).
  • Söyüt, H., Kaya, E.D., and Beydemir, Ş., Impact of antibacterial drugs on human serum paraoxonase-1 (hPON1) activity: an in vitro study, Asian Pacific Journal of Tropical Biomedicine, 4(8), 603–609, (2014).
  • Soyut, H., Inhibition effects of commonly used some antibacterial and antiviral drugs on purified human serum paraoxonase-1 (hPON1), International Journal of Chemistry and Technology, 3(2), 146–150, (2019).
  • Dilek, E.B., Küfrevioğlu, Ö.İ., and Beydemir, Ş., Impacts of some antibiotics on human serum paraoxonase 1 activity, Journal of Enzyme Inhibition and Medicinal Chemistry, 28(4), 758–764, (2013).
  • Türkeş, C., Söyüt, H., and Beydemir, Ş., Human serum paraoxonase-1 (hPON1): In vitro inhibition effects of several antibiotics, Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 622–628, (2015).
  • Kockar, F., Sinan, S., Yildirim, H., and Arslan, O., Differential effects of some antibiotics on paraoxonase enzyme activity in human hepatoma cells (HepG2), Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5), 715–719, (2010).
  • Sinan, S., Kockar, F., Gencer, N., Yildirim, H., and Arslan, O., Amphenicol and macrolide antibiotics inhibit paraoxonase activity in human serum and HepG2 cells in vitro, Biochemistry (Moscow), 71(1), 46–50, (2006).
  • Sinan, S., Kockar, F., Gencer, N., Yildirim, H., and Arslan, O., Effects of some antibiotics on paraoxonase from human serum in vitro and mouse serum/liver in vivo, Biological & Pharmaceutical Bulletin, 29(8), 1559–1563, (2006).
  • Kosaka, T., Yamaguchi, M., Motomura, T., and Mizuno, K., Relationship between atherosclerosis and paraoxonase or homocysteine thiolactonase activity in type 2 diabetes mellitus, Clinica Chimica Acta, 359(1–2), 156–162, (2005).
  • Ergün, A., Yüksel, H., Arslan, M., and Arslan, O., Investigation of the effects of some drugs on sheep Paraoxonase-1, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 483–488, (2023).
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227(5259), 680–685, (1970).
  • Renz, N., Trampuz, A., and Zimmerli, W., Controversy about the role of rifampin in biofilm infections, Antibiotics, 10(2), (2021).
  • Szczuka, E., Grabska, K., and Kaznowski, A., In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms, Current Microbiology, 71(2), 184–189, (2015).
  • Sato, Y., Hatayama, N., Tanzawa, S., Kimura, Y., Wakabayashi, Y., et al., Staphylococcus haemolyticus attenuates antibacterial effect of teicoplanin via aggregates and biofilms, Microbial Pathogenesis, 180, 106152, (2023).
  • Camps, J., Iftimie, S., García-Heredia, A., Castro, A., and Joven, J., Paraoxonases and infectious diseases, Clinical Biochemistry, 50(13–14), 804–811, (2017).
  • Chen, F., Gao, Y., Chen, X., Yu, Z., and Li, X., Quorum quenching enzymes and applications for blocking quorum sensing-dependent infection, International Journal of Molecular Sciences, 14(9), 17477–17500, (2013).
  • Chun, C.K., Ozer, E.A., Welsh, M.J., Zabner, J., and Greenberg, E.P., Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia, Proceedings of the National Academy of Sciences, 101(10), 3587–3590, (2004).
  • Gençer, N. and Arslan, O., Purification of human PON1 Q192 and R192 isoenzymes and investigation of metal inhibition, Journal of Chromatography B, 877(3), 134–140, (2009).
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Enzymes
Journal Section Research Article
Authors

Merve Arslan 0000-0002-4191-0145

Project Number 125Z138
Submission Date November 21, 2025
Acceptance Date December 7, 2025
Early Pub Date December 11, 2025
Publication Date January 20, 2026
Published in Issue Year 2026 Volume: 28 Issue: 1

Cite

APA Arslan, M. (2026). Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 72-80. https://doi.org/10.25092/baunfbed.1827638
AMA Arslan M. Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. January 2026;28(1):72-80. doi:10.25092/baunfbed.1827638
Chicago Arslan, Merve. “Bazı Ilaçların Paraoksonaz Enziminin Laktonaz Aktivitesi üzerindeki Etkilerinin Araştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 1 (January 2026): 72-80. https://doi.org/10.25092/baunfbed.1827638.
EndNote Arslan M (January 1, 2026) Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 1 72–80.
IEEE M. Arslan, “Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 1, pp. 72–80, 2026, doi: 10.25092/baunfbed.1827638.
ISNAD Arslan, Merve. “Bazı Ilaçların Paraoksonaz Enziminin Laktonaz Aktivitesi üzerindeki Etkilerinin Araştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (January2026), 72-80. https://doi.org/10.25092/baunfbed.1827638.
JAMA Arslan M. Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2026;28:72–80.
MLA Arslan, Merve. “Bazı Ilaçların Paraoksonaz Enziminin Laktonaz Aktivitesi üzerindeki Etkilerinin Araştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 1, 2026, pp. 72-80, doi:10.25092/baunfbed.1827638.
Vancouver Arslan M. Bazı ilaçların paraoksonaz enziminin laktonaz aktivitesi üzerindeki etkilerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2026;28(1):72-80.