BibTex RIS Cite

Dejenere Clifford Cebirleri ve Temsilleri

Year 2013, Volume: 15 Issue: 1, 48 - 59, 01.06.2013

Abstract

Bu çalışmada dejenere Clifford cebirlerinden dejenere olmayan Clifford cebirlerine bir gömme teoremi verdik. Dejenere olmayan Clifford Cebirlerinin temsillerini kullanarak dejenere Clifford cebirlerinin temsilleri için bir metod geliştirdik. Düşük boyutlar için bazı açık temsilleri verdik

References

  • T. Friedrich, Dirac Operators in Riemannian Geometry, AMS, (2000).
  • R. Harvey, Spinors and Calibrations, Academic Press, (1990).
  • H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton Univ., (1989).
  • R. Ablamowicz, Structure of spin groups associated with degenerate Clifford algebras, Journal of Mathematical Physics 27, (1986).
  • N. Değirmenci and Ş. Karapazar, Explicit Isomorphisms of Real Clifford Algebras, International Journal of Mathematics and Mathematical Sciences, (2006).
  • M. F. Atiyah, R. Bott and V.K. Shapiro, Clifford Modules, Topology, 3, 1, 3-38, (1964).
  • A.Dimaskis, A new representation of Clifford Algebras, Journal of Physics A: Mathematical and Theoretical., 22, 3171-3193 (1989).
  • A.Trautman, Clifford Algebras and Their Representations, Encyclopedia of Mathematical Physics, (2005).
  • N. Değirmenci and Ş. Koçak, Generalized Self-Duality of 2-Forms, Advance in Applied Clifford Algebras, 13,107-113, (2003).
  • N. Değirmenci and N. Özdemir, The Construction of Maximum Independent Set of Matrices via Clifford Algebras, Turkish Journal of Mathematics, 31, 193-205, (2007).
  • H. Baum and I. Kath, Parallel spinors and holonomy groups on pseudo- Riemannian spin manifolds, Annals of Global Analysis and Geometry, 17, 1-17, (1999).
  • C. Faith, Algebra I: Rings, Modules, and Categories, Springer-Verlag, (1973).
  • D. R. Farenick, Algebras of Linear Transformations, Springer-Verlag, (2001)

Degenerate Clifford Algebras and Their Reperesentations

Year 2013, Volume: 15 Issue: 1, 48 - 59, 01.06.2013

Abstract

In this study, we give an imbedding theorem for a degenerate Clifford algebra into nondegenerate one. By using the representations of non-degenerate Clifford algebra we develop a method for the representations of the degenerate Clifford algebras. We give some explicit constructions for lower dimensions

References

  • T. Friedrich, Dirac Operators in Riemannian Geometry, AMS, (2000).
  • R. Harvey, Spinors and Calibrations, Academic Press, (1990).
  • H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton Univ., (1989).
  • R. Ablamowicz, Structure of spin groups associated with degenerate Clifford algebras, Journal of Mathematical Physics 27, (1986).
  • N. Değirmenci and Ş. Karapazar, Explicit Isomorphisms of Real Clifford Algebras, International Journal of Mathematics and Mathematical Sciences, (2006).
  • M. F. Atiyah, R. Bott and V.K. Shapiro, Clifford Modules, Topology, 3, 1, 3-38, (1964).
  • A.Dimaskis, A new representation of Clifford Algebras, Journal of Physics A: Mathematical and Theoretical., 22, 3171-3193 (1989).
  • A.Trautman, Clifford Algebras and Their Representations, Encyclopedia of Mathematical Physics, (2005).
  • N. Değirmenci and Ş. Koçak, Generalized Self-Duality of 2-Forms, Advance in Applied Clifford Algebras, 13,107-113, (2003).
  • N. Değirmenci and N. Özdemir, The Construction of Maximum Independent Set of Matrices via Clifford Algebras, Turkish Journal of Mathematics, 31, 193-205, (2007).
  • H. Baum and I. Kath, Parallel spinors and holonomy groups on pseudo- Riemannian spin manifolds, Annals of Global Analysis and Geometry, 17, 1-17, (1999).
  • C. Faith, Algebra I: Rings, Modules, and Categories, Springer-Verlag, (1973).
  • D. R. Farenick, Algebras of Linear Transformations, Springer-Verlag, (2001)
There are 13 citations in total.

Details

Other ID JA22CZ96TS
Authors

Şenay Bulut This is me

Submission Date June 1, 2013
Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 15 Issue: 1

Cite

APA Bulut, Ş. (2013). Dejenere Clifford Cebirleri ve Temsilleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 48-59.
AMA Bulut Ş. Dejenere Clifford Cebirleri ve Temsilleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. June 2013;15(1):48-59.
Chicago Bulut, Şenay. “Dejenere Clifford Cebirleri Ve Temsilleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15, no. 1 (June 2013): 48-59.
EndNote Bulut Ş (June 1, 2013) Dejenere Clifford Cebirleri ve Temsilleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15 1 48–59.
IEEE Ş. Bulut, “Dejenere Clifford Cebirleri ve Temsilleri”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 15, no. 1, pp. 48–59, 2013.
ISNAD Bulut, Şenay. “Dejenere Clifford Cebirleri Ve Temsilleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15/1 (June2013), 48-59.
JAMA Bulut Ş. Dejenere Clifford Cebirleri ve Temsilleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2013;15:48–59.
MLA Bulut, Şenay. “Dejenere Clifford Cebirleri Ve Temsilleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 15, no. 1, 2013, pp. 48-59.
Vancouver Bulut Ş. Dejenere Clifford Cebirleri ve Temsilleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2013;15(1):48-59.