Araştırma Makalesi
BibTex RIS Kaynak Göster

Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi

Yıl 2018, , 296 - 310, 25.02.2018
https://doi.org/10.25092/baunfbed.398476

Öz

Silika destekli Ni(II)-Schiff Bazı kompleksinin hazırlanması amacıyla, daha önceki çalışmamızda sentezlenen [1] Ni(II)-Schiff Bazı Kompleksi, SiO2 üzerine tutturularak SiO2 destekli Ni(II)-Schiff Bazı kompleksi elde edildi.  Hazırlanan bu SiO2 destekli kompleks, katalitik aktivitesine bakılmak üzere hidrojen üretim için NaBH4’ün hidroliz reaksiyonunda katalizör olarak kullanıldı. Hazırlanan bu katalizörün yapısı FT-IR, SEM, XRD, BET analizi gibi spektroskopik yöntemlerle aydınlatıldı.  SiO2 destekli Ni(II)-Schiff Bazı kompleksinin katalizör olarak kullanıldığı NaBH4’ün hidroliz reaksiyonu; NaOH ve NaBH4 konsantrasyonuna, katalizör miktarına, SiO2 destekli Ni(II)-Schiff Bazı kompleks katalizörünün içerisinde bulunan Ni (II)-Schiff Bazı kompleksinin yüzdesine ve sıcaklığa bağlı olarak incelendi.  NaBH4’ün hidroliz reaksiyonuna ait maksimum reaksiyon hızı (R0)  13005 mL H2 g-1 kat. dk-1, reaksiyonun aktivasyon enerjisi (Ea) ise 16,633 kJ/mol olarak, reaksiyon hız mertebesi n ise 0,3 olarak hesaplanmıştır. 

Kaynakça

  • Kilinc, D., Sahin, O., Saka, C., Investigation on salisylaldimine-Ni complex catalyst as an alternative to increasing the performance of catalytic hydrolysis of sodium borohydride, International Journal of Hydrogen Energy, 42, 20625-20637 (2017).
  • Dicks, A.L., Hydrogen generation from natural gas for the fuel cell systems of tomorrow, Journal of Power Sources, 61, 113-124, (1996).
  • Kilinc, D., Saka, C., Sahin, O., Hydrogen generation from catalytic hydrolysis of sodium borohydride by a novel Co(II)–Cu(II) based complex catalyst, Journal of Power Sources, 217, 256-261, (2012).
  • Schuth, F., Bogdanovic, B., Felderhoff, M., Light metal hydrides and complex hydrides for hydrogen storage, Chemical Communication 20, 2249–2258, (2004).
  • Muir, S.S., Yao, X., Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems, International Journal of Hydrogen Energy, 35, 5983-97, (2011).
  • Shang, Y., Chen, R., Hydrogen storage via the hydrolysis of NaBH4 basic solution: optimization of NaBH4 concentration, Energy Fuels, 20, 2142-2148, (2006).
  • Chew WM, Ayers OE, Murfree JA, Martignoni P. Solid propellants for generating hydrogen, US patent no: 4,061,512, (1977).
  • Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride, International Journal of Hydrogen Energy, 28, 9, 989–93, (2003).
  • Ay M, Midilli A, Dince I. Investigation of hydrogen production from boron compounds for pem fuel cells, Journal of Power Sources 157, 104–113, (2006).
  • Mazur DJ, Weinberg NL, Guibault LJ, Chin AA, Tomantschger K. One-step electrosynthesis of borohydride, US patent application no: 20050224365, (2005).
  • Minkina, V., Shabunya, S., Kalinin, V., Martynenko, V., Smirnova, A., Long-term stability of sodium borohydrides for hydrogen generation, International Journal of Hydrogen Energy, 33, 5629-5635, (2008).
  • Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P., Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell, Fuel Cells, 10, 335-350, (2010).
  • Santos, D.M.F., Sequeira, C.A., Sodium borohydride as a fuel for the future, Renewable Sustainable Energy Review, 15, 3980-4001, (2011).
  • Kim, T., NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane), Fuel Cell, Energy, 69, 721-727, (2014).
  • Galli, S., De Francesco, M., Monteleone, G., Oronzio, R., Pozio, A., Development of a compact hydrogen generator from sodium borohydride, International Journal of Hydrogen Energy, 35, 7344-7349, (2010).
  • Kojima, Y., Suzuki, K., Fukumoto, K, Kawai, Y., Kimbara, M., Nakanishi, H., et al., Development of 10 kW-scale hydrogen generator using chemical hydride, Journal of Power Sources, 125, 22-26, (2004).
  • Zhang, J., Zheng, Y., Gore, J.P., Mudawar, I., Fisher, T.S., Sodium borohydride hydrogen generation system: part II: reactor modeling, Journal of Power Sources, 170, 150-159, (2007).
  • Shurtleff, K., Ladd,E., Patton, J., Brydon, C., Pearson, K., System for generating hydrogen from a chemical hydride, United States Patent, 7651542 B2-(2010).
  • Oronzio, R., Monteleone, G., Pozio, A., De Francesco, M., Galli, S., New reactor design for catalytic sodium borohydride hydrolysis, International Journal of Hydrogen Energy, 34, 455-460, (2009).
  • Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Kelly, M.T., Petillo, P.J., Binder, M., An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst, Journal of Power Sources, 85, 186-189, (2000).
  • Kong, V.C.Y., Foulkes, F.R., Kirk, D.W., Hinatsu, J.T., Development of hydrogen storage for fuel cellgenerators: Hydrogen generation using hydrolysishydrides, International Journal of Hydrogen Energy, 24, 665–675, (1999).
  • Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen, Journal of American Chemical Society, 75, 215–219, (1953).
  • Suda, S., Sun, Y. M., Liu, B. H., Zhou, Y., Morimitsu, S., Arai, K., Tsukamoto, N., Uchida, M., Candra, Y. & Li, Z. P., Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts, Applied Physics A, 72, 209-212, (2001).
  • Larichev, Y. V., Netskina, O. V., Komova, O. V., Simagina, V. I., Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis, International Journal of Hydrogen Energy, 35, 6501–6507, (2010).
  • Dongyan, X., Huamin, Z., Wei, Y., Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/ C, Catalysis Communications, 8, 1767-1771, (2007).
  • Li, Q., Chen, Y., Lee, D.J., Li, F., Kim, H., Preparation of Y-zeolite/ CoCl2 doped PVDF composite nanofiber and its application in hydrogen production, Energy, 38, 144-150, (2012).
  • Sahin, O., Saka, C., Baytar, O., Hansu, F., Influence of plasma treatment on electrochemical activity of Ni (0)-based catalyst for hydrogen production by hydrolysis of NaBH4, Journal of Power Sources, 240, 729-735, (2013).
  • Sahin, O., Kilinc, D., Saka, C., Bimetallic Co–Ni based complex catalyst for hydrogen production by catalytic hydrolysis of sodium borohydride with an alternative approach, Journal of Energy Institute, 89, 617-626, (2016).
  • Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M., and Revankar, S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, Journal of Power Sources, 179, 335–339, (2008).
  • Ulusoy, M., Sahin, O., Buyukgungor, O., Cetinkaya B., Imidazolium salicylaldimine frameworks for the preparation of tridentate N-heterocyclic carbene ligands, Journal of Organomet Chemistry, 693, 1895-1902, (2008).
  • Kurup, M.R.P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S.R., Suresh, E.,Synthesis, spectral characterization and crystal structure of copper (II) complexes of 2-benzoylpyridine-N4-phenylsemicarbazone, Polyhedron, 30, 70-78 (2011).

Investigation of synthesis, characterization and catalytic effect on hydrogen production of silica supported-Ni(II)-salicylaldimine complex

Yıl 2018, , 296 - 310, 25.02.2018
https://doi.org/10.25092/baunfbed.398476

Öz

For preparing SiO2 supported Ni (II)-Schiff Base complex,  Ni (II)-Schiff Base complex, which was synthesized in our previous work, was used and supported on SiO2.  This SiO2 supported complex was used as a catalyst in hydrolysis reaction of NaBH4 for hydrogen production, to look at its catalytic activity. The structure of this prepared catalyst was illuminated by spectroscopic methods such as FT-IR, SEM, XRD, BET analysis.  The SiO2 supported Ni(II)-Schiff complex catalyzed hydrolysis reaction was investigated depending on the concentration of NaOH and NaBH4, amount of catalyst percentage of Ni (II) -Schiffe complex in the SiO2 supported Ni (II)-Schiff complex complex catalyst and the temperature.  The maximum reaction rate (R0) for the hydrolysis reaction of NaBH4 is 13005 mL H2 g -1. min, the activation energy of the reaction (Ea) is 16,633 kJ/mol, and the reaction rate n is 0.3.

Kaynakça

  • Kilinc, D., Sahin, O., Saka, C., Investigation on salisylaldimine-Ni complex catalyst as an alternative to increasing the performance of catalytic hydrolysis of sodium borohydride, International Journal of Hydrogen Energy, 42, 20625-20637 (2017).
  • Dicks, A.L., Hydrogen generation from natural gas for the fuel cell systems of tomorrow, Journal of Power Sources, 61, 113-124, (1996).
  • Kilinc, D., Saka, C., Sahin, O., Hydrogen generation from catalytic hydrolysis of sodium borohydride by a novel Co(II)–Cu(II) based complex catalyst, Journal of Power Sources, 217, 256-261, (2012).
  • Schuth, F., Bogdanovic, B., Felderhoff, M., Light metal hydrides and complex hydrides for hydrogen storage, Chemical Communication 20, 2249–2258, (2004).
  • Muir, S.S., Yao, X., Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems, International Journal of Hydrogen Energy, 35, 5983-97, (2011).
  • Shang, Y., Chen, R., Hydrogen storage via the hydrolysis of NaBH4 basic solution: optimization of NaBH4 concentration, Energy Fuels, 20, 2142-2148, (2006).
  • Chew WM, Ayers OE, Murfree JA, Martignoni P. Solid propellants for generating hydrogen, US patent no: 4,061,512, (1977).
  • Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride, International Journal of Hydrogen Energy, 28, 9, 989–93, (2003).
  • Ay M, Midilli A, Dince I. Investigation of hydrogen production from boron compounds for pem fuel cells, Journal of Power Sources 157, 104–113, (2006).
  • Mazur DJ, Weinberg NL, Guibault LJ, Chin AA, Tomantschger K. One-step electrosynthesis of borohydride, US patent application no: 20050224365, (2005).
  • Minkina, V., Shabunya, S., Kalinin, V., Martynenko, V., Smirnova, A., Long-term stability of sodium borohydrides for hydrogen generation, International Journal of Hydrogen Energy, 33, 5629-5635, (2008).
  • Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P., Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell, Fuel Cells, 10, 335-350, (2010).
  • Santos, D.M.F., Sequeira, C.A., Sodium borohydride as a fuel for the future, Renewable Sustainable Energy Review, 15, 3980-4001, (2011).
  • Kim, T., NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane), Fuel Cell, Energy, 69, 721-727, (2014).
  • Galli, S., De Francesco, M., Monteleone, G., Oronzio, R., Pozio, A., Development of a compact hydrogen generator from sodium borohydride, International Journal of Hydrogen Energy, 35, 7344-7349, (2010).
  • Kojima, Y., Suzuki, K., Fukumoto, K, Kawai, Y., Kimbara, M., Nakanishi, H., et al., Development of 10 kW-scale hydrogen generator using chemical hydride, Journal of Power Sources, 125, 22-26, (2004).
  • Zhang, J., Zheng, Y., Gore, J.P., Mudawar, I., Fisher, T.S., Sodium borohydride hydrogen generation system: part II: reactor modeling, Journal of Power Sources, 170, 150-159, (2007).
  • Shurtleff, K., Ladd,E., Patton, J., Brydon, C., Pearson, K., System for generating hydrogen from a chemical hydride, United States Patent, 7651542 B2-(2010).
  • Oronzio, R., Monteleone, G., Pozio, A., De Francesco, M., Galli, S., New reactor design for catalytic sodium borohydride hydrolysis, International Journal of Hydrogen Energy, 34, 455-460, (2009).
  • Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Kelly, M.T., Petillo, P.J., Binder, M., An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst, Journal of Power Sources, 85, 186-189, (2000).
  • Kong, V.C.Y., Foulkes, F.R., Kirk, D.W., Hinatsu, J.T., Development of hydrogen storage for fuel cellgenerators: Hydrogen generation using hydrolysishydrides, International Journal of Hydrogen Energy, 24, 665–675, (1999).
  • Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen, Journal of American Chemical Society, 75, 215–219, (1953).
  • Suda, S., Sun, Y. M., Liu, B. H., Zhou, Y., Morimitsu, S., Arai, K., Tsukamoto, N., Uchida, M., Candra, Y. & Li, Z. P., Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts, Applied Physics A, 72, 209-212, (2001).
  • Larichev, Y. V., Netskina, O. V., Komova, O. V., Simagina, V. I., Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis, International Journal of Hydrogen Energy, 35, 6501–6507, (2010).
  • Dongyan, X., Huamin, Z., Wei, Y., Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/ C, Catalysis Communications, 8, 1767-1771, (2007).
  • Li, Q., Chen, Y., Lee, D.J., Li, F., Kim, H., Preparation of Y-zeolite/ CoCl2 doped PVDF composite nanofiber and its application in hydrogen production, Energy, 38, 144-150, (2012).
  • Sahin, O., Saka, C., Baytar, O., Hansu, F., Influence of plasma treatment on electrochemical activity of Ni (0)-based catalyst for hydrogen production by hydrolysis of NaBH4, Journal of Power Sources, 240, 729-735, (2013).
  • Sahin, O., Kilinc, D., Saka, C., Bimetallic Co–Ni based complex catalyst for hydrogen production by catalytic hydrolysis of sodium borohydride with an alternative approach, Journal of Energy Institute, 89, 617-626, (2016).
  • Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M., and Revankar, S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, Journal of Power Sources, 179, 335–339, (2008).
  • Ulusoy, M., Sahin, O., Buyukgungor, O., Cetinkaya B., Imidazolium salicylaldimine frameworks for the preparation of tridentate N-heterocyclic carbene ligands, Journal of Organomet Chemistry, 693, 1895-1902, (2008).
  • Kurup, M.R.P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S.R., Suresh, E.,Synthesis, spectral characterization and crystal structure of copper (II) complexes of 2-benzoylpyridine-N4-phenylsemicarbazone, Polyhedron, 30, 70-78 (2011).
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Dilek Kılınç

Yayımlanma Tarihi 25 Şubat 2018
Gönderilme Tarihi 14 Kasım 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Kılınç, D. (2018). Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 296-310. https://doi.org/10.25092/baunfbed.398476
AMA Kılınç D. Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2018;20(1):296-310. doi:10.25092/baunfbed.398476
Chicago Kılınç, Dilek. “Silika Destekli Ni(II)-Salisilaldimin Kompleksinin Sentezi, Karakterizasyonu Ve Hidrojen üretimindeki Katalitik Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 1 (Temmuz 2018): 296-310. https://doi.org/10.25092/baunfbed.398476.
EndNote Kılınç D (01 Temmuz 2018) Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 1 296–310.
IEEE D. Kılınç, “Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 1, ss. 296–310, 2018, doi: 10.25092/baunfbed.398476.
ISNAD Kılınç, Dilek. “Silika Destekli Ni(II)-Salisilaldimin Kompleksinin Sentezi, Karakterizasyonu Ve Hidrojen üretimindeki Katalitik Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/1 (Temmuz 2018), 296-310. https://doi.org/10.25092/baunfbed.398476.
JAMA Kılınç D. Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2018;20:296–310.
MLA Kılınç, Dilek. “Silika Destekli Ni(II)-Salisilaldimin Kompleksinin Sentezi, Karakterizasyonu Ve Hidrojen üretimindeki Katalitik Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 1, 2018, ss. 296-10, doi:10.25092/baunfbed.398476.
Vancouver Kılınç D. Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2018;20(1):296-310.