BibTex RIS Kaynak Göster

Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model

Yıl 2015, Cilt: 17 Sayı: 2, 83 - 102, 01.12.2015

Öz

Bu çalışmada, yapı projelerinin ilgili yönetmeliklere göre uygunluklarının denetlenmesi sürecinin otomasyonuna yönelik sayısal yönetmelik temsillerinin oluşturulması için geliştirilen yeni bir temsil modeli anlatılmaktadır. Geliştirilen temsil modeli, düz yazı biçimindeki yönetmeliklerin kurgusal yapısının tanımlanmasına dair teorik çalışmaların sonucu ortaya çıkan ve literatürde dört katmanlı modelleme paradigması olarak bilinen yaklaşıma dayanmaktadır. Bilgi modelleme yöntemi olarak ise son zamanlarda ortaya çıkan semantik modelleme yaklaşımı kullanılmaktadır. Geliştirilen model ile yönetmelikleri oluşturan terimlerin, kural cümlelerinin, kurallar arası ilişkilerin ve genel yapının ayrı katmanlarda modellenmesi sağlanarak yönetmelik temsili için sistematik bir yöntem ortaya konmaktadır. Geliştirilen modelin yapı tasarımı alanında uygulanabilirliği, İzmir Büyükşehir Belediyesi İmar Yönetmeliği örnekleminde gösterilmiştir

Kaynakça

  • [1] Eastman, C.M., J.-m. Lee, Y.-s. Jeong, ve J.-k. Lee, Automatic Rule-Based Checking of Building Designs. Automation in Construction, 2009. 18(8), 1011-1033.
  • [2] Fenves, S.J., R.N. Wright, F.I. Stahl, ve K.A. Reed, Introduction to Sase: Standards Analysis, Synthesis and Expression, NBSIR, Editor. 1987, National Bureau of Standards: Washington, D.C.
  • [3] Eastman, C., Automated Assessment of Early Concept Designs. Architectural Design, 2009. 79(2), 52-57.
  • [4] Rasdorf, W.J.ve S. Lakmazaheri, Logic-Based Approach for Modeling Organization of Design Standards. Journal of Computing in Civil Engineering, 1990. 4(2), 102-123.
  • [5] Jain, D., K.H. Law, ve H. Krawinkler. On Processing Standards with Predicate Calculus. Sixth Conference on Computing in Civil Engineering. 1989. Atlanta, Georgia: ASCE.
  • [6] Garrett, J.H.J.ve M.M. Hakim, Object-Oriented Model of Engineering Design Standards. Journal of Computing in Civil Engineering, 1992. 6(3), 323-347.
  • [7] Kiliccote, H., J. James H. Garrett, T.J. Chmielenski, ve K.A. Reed. The ContextOriented Model: An Improved Modeling Approach for Representing and Processing Design Standards. First ASCE Congress on Computing in Civil Engineering. 1994. Washington, D.C: New York:ASCE.
  • [8] Liebich, T., J. Wix, J. Forester, ve Z. Qi. Speeding-up the Building Plan Approval - the Singapore E-Plan Checking Project Offers Automatic Plan Checking Based on Ifc. European Conferences on Product and Process Modelling (ECPPM) 2002 - eWork and eBusiness in Architecture, Engineering and Construction. 2002. Portoroz, Slovenia: eWork and eBusiness in Architecture, Engineering and Construction.
  • [9] Conover, D., Development and Implementation of Automated Code Compliance Checking in the U.S. 2007, International Code Council.
  • [10] Kerrigan, S.ve K.H. Law. Logic-Based Regulation Compliance-Assistance. 9th International Conference on Artificial Intelligence and Law 2003. Scotland, United Kingdom: ACM.
  • [11] Fenves, S.J., Tabular Decision Logic for Structural Design. Journal of Structural Division ASCE, 1966. 92, 473-490.
  • [12] Fenves, S.J., E.H. Gaylord, ve S.K. Goel, Decision Table Formulation of the 1969 Aisc Specification, in Civil Engineering Studies SRS-347. 1969.
  • [13] Nyman, D.J., S.J. Fenves, ve R.N. Wright, Restructuring Study of the Aisc Specification, in Civil Engineering Studies SRS-393. 1973, Department of Civil Engineering, University of Illinois Engineering Experiment Station: UrbanaChampaign.
  • [14] Rosenman, M.A.ve J.S. Gero, Design Codes as Expert Systems. ComputerAided Design, 1985. 17(9), 399-409.
  • [15] Dym, C.L., R.P. Henchey, E.A. Delis, ve S. Gonick, A Knowledge-Based System for Automated Architectural Code Checking. Computer-Aided Design, 1988. 20(3), 137-145.
  • [16] Rasdorf, W.ve T. Wang, Generic Design Standards Processing in an Expert System Environment. Journal of Computing in Civil Engineering, 1988. 2(1), 68-87.
  • [17] Kumar, B., Knowledge Processing for Structural Design. 1995, Southampton, UK ;: Computational Mechanics Publications.
  • [18] Waard, M.d. Computer Aided Conformance Checking. Computers and Building Standards Workshop. 1992. Montreal, Canada: Research Press of the National Research Council of Canada.
  • [19] Yabuki, N.ve K.H. Law, An Object-Logic Model for the Representation and Processing of Design Standards. Engineering with Computers, 1993. 9(3), 133-159.
  • [20] Kiliccote, H.ve J.H. Garrett, Standards Modeling Language. Journal of Computing in Civil Engineering, 1998. 12(3), 129-135.
  • [21] AEC3. International Code Council. 2012 February, 23, 2013]; Available from: http://www.aec3.com/en/5/5_013_ICC.htm.
  • [22] Conover, D., Method and Apparatus for Automatically Determining Compliance with Building Regulations. 2009: Washington, DC, US.
  • [23] Yurchyshyna, A., C. Faron-Zucker, N.L. Thanh, ve A. Zarli. Towards an Ontology-Enabled Approach for Modeling the Process of Conformity Checking in Construction. CAiSE Forum. 2008. Montpellier, France.
  • [24] Pauwels, P., vd., A Semantic Rule Checking Environment for Building Performance Checking. Automation in Construction, 2011. 20(5), 506-518.
  • [25] Cheng, C.P., vd., Improving Access to and Understanding of Regulations through Taxonomies. Government Information Quarterly, 2009. 26(2), 238- 245.
  • [26] Salama, D.M.ve N.M. El-Gohary, Semantic Modeling for Automated Compliance Checking, Computing in Civil Engineering. 2011, 641-648.
  • [27] Zhang, J.ve N.M. El-Gohary. Automated Information Extraction from Construction-Related Regulatory Documents for Automated Compliance Checking. CIM W78-W102 Conference. 2011. Sophia Antipolis, France.
  • [28] Ding, L., vd., Automating Code Checking for Building Designs – Designcheck, in Clients Driving Innovation: Moving Ideas into Practice, K. Brown, K. Hampson, ve P. Brandon, Editors. 2006, Cooperative Research Centre (CRC) for Construction Innovation: Gold Coast, Queensland, Australia, 113-126.
  • [29] Eastman, C.M., J.-m. Lee, Y.-s. Jeong, ve J.-k. Lee, Implementation of Automatic Circulation Checking Module. 2008, Georgia Tech. .
  • [30] Nyman, D.J.ve S.J. Fenves, An Organization Model for Design Specifications. Journal of structural Division ASCE, 1975. 101(4): p. 697-716.
  • [31] Hakim, M.M.ve J.H. Garrett. Issues in Modelling and Processing Design Standards. The joint CIB Workshops on Computers and Information in Construction. 1992. CIB Publication 165.
  • [32] Fenves, S.J., vd., Computer Representations of Design Standards and Building Codes: U.S. Perspective. The International Journal of Construction Information Technology, 1995. 3(1), 13-34.
  • [33] Nisbet, N., J. Wix, ve D. Conover, The Future of Virtual Construction and Regulation Checking, Virtual Futures for Design, Construction & Procurement. 2009, Blackwell Publishing Ltd. 241-250.
  • [34] Macit, S., M.E. İlal, H.M. Günaydın, ve G. Suter. İzmi Municipality Housing and Zoning Code Analysis and Representation for Compliance Checking. 20th Workshop of the European Group for Intelligent Computing in Engineering. 2013. Vienna, Austria: EG-ICE.
  • [35] Macit, S., G. Suter, M.E. İlal, ve H.M. Günaydın. Yapı Yönetmeliklerinin Bilgisayarda Modellenmesine Yönelik Analiz Çalışması. 2. Proje ve Yapım Yönetimi Kongresi. 2012. İzmir Yüksek Teknoloji Enstitüsü, Urla-İzmir.

Building Code Representation: A New Model

Yıl 2015, Cilt: 17 Sayı: 2, 83 - 102, 01.12.2015

Öz

This paper presents a study in automated compliance checking, concentrating on building code representations. A new model for representing building codes in computer implementable form is developed for use in building automated compliance checking systems. The model adopts the four level representation paradigm as a theoretical base and uses the semantic modeling approach for developing the building code representation. The model breaks down the representation into four levels which allows separate modeling of domain concepts, individual rule statements, relationships between rules, and the organization of the building code. The applicability of the model has been evaluated through a case study. The case study successfully illustrates the modeling of building codes that constitute parts of İzmir Municipality Housing and Zoning Code, as well as a prototype implementation of an automated checking system utilizing this building code representation

Kaynakça

  • [1] Eastman, C.M., J.-m. Lee, Y.-s. Jeong, ve J.-k. Lee, Automatic Rule-Based Checking of Building Designs. Automation in Construction, 2009. 18(8), 1011-1033.
  • [2] Fenves, S.J., R.N. Wright, F.I. Stahl, ve K.A. Reed, Introduction to Sase: Standards Analysis, Synthesis and Expression, NBSIR, Editor. 1987, National Bureau of Standards: Washington, D.C.
  • [3] Eastman, C., Automated Assessment of Early Concept Designs. Architectural Design, 2009. 79(2), 52-57.
  • [4] Rasdorf, W.J.ve S. Lakmazaheri, Logic-Based Approach for Modeling Organization of Design Standards. Journal of Computing in Civil Engineering, 1990. 4(2), 102-123.
  • [5] Jain, D., K.H. Law, ve H. Krawinkler. On Processing Standards with Predicate Calculus. Sixth Conference on Computing in Civil Engineering. 1989. Atlanta, Georgia: ASCE.
  • [6] Garrett, J.H.J.ve M.M. Hakim, Object-Oriented Model of Engineering Design Standards. Journal of Computing in Civil Engineering, 1992. 6(3), 323-347.
  • [7] Kiliccote, H., J. James H. Garrett, T.J. Chmielenski, ve K.A. Reed. The ContextOriented Model: An Improved Modeling Approach for Representing and Processing Design Standards. First ASCE Congress on Computing in Civil Engineering. 1994. Washington, D.C: New York:ASCE.
  • [8] Liebich, T., J. Wix, J. Forester, ve Z. Qi. Speeding-up the Building Plan Approval - the Singapore E-Plan Checking Project Offers Automatic Plan Checking Based on Ifc. European Conferences on Product and Process Modelling (ECPPM) 2002 - eWork and eBusiness in Architecture, Engineering and Construction. 2002. Portoroz, Slovenia: eWork and eBusiness in Architecture, Engineering and Construction.
  • [9] Conover, D., Development and Implementation of Automated Code Compliance Checking in the U.S. 2007, International Code Council.
  • [10] Kerrigan, S.ve K.H. Law. Logic-Based Regulation Compliance-Assistance. 9th International Conference on Artificial Intelligence and Law 2003. Scotland, United Kingdom: ACM.
  • [11] Fenves, S.J., Tabular Decision Logic for Structural Design. Journal of Structural Division ASCE, 1966. 92, 473-490.
  • [12] Fenves, S.J., E.H. Gaylord, ve S.K. Goel, Decision Table Formulation of the 1969 Aisc Specification, in Civil Engineering Studies SRS-347. 1969.
  • [13] Nyman, D.J., S.J. Fenves, ve R.N. Wright, Restructuring Study of the Aisc Specification, in Civil Engineering Studies SRS-393. 1973, Department of Civil Engineering, University of Illinois Engineering Experiment Station: UrbanaChampaign.
  • [14] Rosenman, M.A.ve J.S. Gero, Design Codes as Expert Systems. ComputerAided Design, 1985. 17(9), 399-409.
  • [15] Dym, C.L., R.P. Henchey, E.A. Delis, ve S. Gonick, A Knowledge-Based System for Automated Architectural Code Checking. Computer-Aided Design, 1988. 20(3), 137-145.
  • [16] Rasdorf, W.ve T. Wang, Generic Design Standards Processing in an Expert System Environment. Journal of Computing in Civil Engineering, 1988. 2(1), 68-87.
  • [17] Kumar, B., Knowledge Processing for Structural Design. 1995, Southampton, UK ;: Computational Mechanics Publications.
  • [18] Waard, M.d. Computer Aided Conformance Checking. Computers and Building Standards Workshop. 1992. Montreal, Canada: Research Press of the National Research Council of Canada.
  • [19] Yabuki, N.ve K.H. Law, An Object-Logic Model for the Representation and Processing of Design Standards. Engineering with Computers, 1993. 9(3), 133-159.
  • [20] Kiliccote, H.ve J.H. Garrett, Standards Modeling Language. Journal of Computing in Civil Engineering, 1998. 12(3), 129-135.
  • [21] AEC3. International Code Council. 2012 February, 23, 2013]; Available from: http://www.aec3.com/en/5/5_013_ICC.htm.
  • [22] Conover, D., Method and Apparatus for Automatically Determining Compliance with Building Regulations. 2009: Washington, DC, US.
  • [23] Yurchyshyna, A., C. Faron-Zucker, N.L. Thanh, ve A. Zarli. Towards an Ontology-Enabled Approach for Modeling the Process of Conformity Checking in Construction. CAiSE Forum. 2008. Montpellier, France.
  • [24] Pauwels, P., vd., A Semantic Rule Checking Environment for Building Performance Checking. Automation in Construction, 2011. 20(5), 506-518.
  • [25] Cheng, C.P., vd., Improving Access to and Understanding of Regulations through Taxonomies. Government Information Quarterly, 2009. 26(2), 238- 245.
  • [26] Salama, D.M.ve N.M. El-Gohary, Semantic Modeling for Automated Compliance Checking, Computing in Civil Engineering. 2011, 641-648.
  • [27] Zhang, J.ve N.M. El-Gohary. Automated Information Extraction from Construction-Related Regulatory Documents for Automated Compliance Checking. CIM W78-W102 Conference. 2011. Sophia Antipolis, France.
  • [28] Ding, L., vd., Automating Code Checking for Building Designs – Designcheck, in Clients Driving Innovation: Moving Ideas into Practice, K. Brown, K. Hampson, ve P. Brandon, Editors. 2006, Cooperative Research Centre (CRC) for Construction Innovation: Gold Coast, Queensland, Australia, 113-126.
  • [29] Eastman, C.M., J.-m. Lee, Y.-s. Jeong, ve J.-k. Lee, Implementation of Automatic Circulation Checking Module. 2008, Georgia Tech. .
  • [30] Nyman, D.J.ve S.J. Fenves, An Organization Model for Design Specifications. Journal of structural Division ASCE, 1975. 101(4): p. 697-716.
  • [31] Hakim, M.M.ve J.H. Garrett. Issues in Modelling and Processing Design Standards. The joint CIB Workshops on Computers and Information in Construction. 1992. CIB Publication 165.
  • [32] Fenves, S.J., vd., Computer Representations of Design Standards and Building Codes: U.S. Perspective. The International Journal of Construction Information Technology, 1995. 3(1), 13-34.
  • [33] Nisbet, N., J. Wix, ve D. Conover, The Future of Virtual Construction and Regulation Checking, Virtual Futures for Design, Construction & Procurement. 2009, Blackwell Publishing Ltd. 241-250.
  • [34] Macit, S., M.E. İlal, H.M. Günaydın, ve G. Suter. İzmi Municipality Housing and Zoning Code Analysis and Representation for Compliance Checking. 20th Workshop of the European Group for Intelligent Computing in Engineering. 2013. Vienna, Austria: EG-ICE.
  • [35] Macit, S., G. Suter, M.E. İlal, ve H.M. Günaydın. Yapı Yönetmeliklerinin Bilgisayarda Modellenmesine Yönelik Analiz Çalışması. 2. Proje ve Yapım Yönetimi Kongresi. 2012. İzmir Yüksek Teknoloji Enstitüsü, Urla-İzmir.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA22CV69TR
Bölüm Araştırma Makalesi
Yazarlar

Sibel Macit Bu kişi benim

H. Murat Günaydın Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Gönderilme Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 17 Sayı: 2

Kaynak Göster

APA Macit, S., & Günaydın, H. M. (2015). Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), 83-102.
AMA Macit S, Günaydın HM. Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model. BAUN Fen. Bil. Enst. Dergisi. Aralık 2015;17(2):83-102.
Chicago Macit, Sibel, ve H. Murat Günaydın. “Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17, sy. 2 (Aralık 2015): 83-102.
EndNote Macit S, Günaydın HM (01 Aralık 2015) Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17 2 83–102.
IEEE S. Macit ve H. M. Günaydın, “Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model”, BAUN Fen. Bil. Enst. Dergisi, c. 17, sy. 2, ss. 83–102, 2015.
ISNAD Macit, Sibel - Günaydın, H. Murat. “Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17/2 (Aralık 2015), 83-102.
JAMA Macit S, Günaydın HM. Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model. BAUN Fen. Bil. Enst. Dergisi. 2015;17:83–102.
MLA Macit, Sibel ve H. Murat Günaydın. “Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 17, sy. 2, 2015, ss. 83-102.
Vancouver Macit S, Günaydın HM. Yapı Yönetmeliklerinin Sayısal Temsili: Yeni Bir Model. BAUN Fen. Bil. Enst. Dergisi. 2015;17(2):83-102.