BibTex RIS Cite

Biyolojik hidrojen üretim prosesleri

Year 2009, Volume: 11 Issue: 2, 17 - 36, 01.12.2009

Abstract

Hidrojen alternatif yakıt olarak büyük bir potansiyele sahip temiz bir enerji taşıyıcısıdır. Hidrojen üretimi için çeşitli teknolojiler vardır. Biyolojik hidrojen üretim prosesleri termokimyasal ve elektrokimyasal proseslere kıyaslandığında daha çevre dostu ve çok az enerji yoğunluklu olduğu bulunmuştur. Hidrojen biyolojik olarak biofotoliz, foto-fermentasyon ve karanlık-fermentasyon veya bu proseslerin kombinasyonu ile üretilebilir. Literatüre göre, maksimum hidrojen verimi 7,1 mol H2/mol glukoz olarak bulunmuştur. Düşük hidrojen verimi ve düşük hidrojen üretim hızı bu proseslerin ticarileşmesinde en önemli engeldir. Genetik olarak modifiye edilmiş mikroorganizmaların gelişimi, prosesin işletme şartlarının iyileştirilmesi, kombine proseslerin gelişimi gibi ilerlemeler biohidrojen teknolojisinin hızlı bir şekilde ticarileşmesini sağlayacaktır

References

  • [1] Das, D. ve Veziroğlu, T.N., Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 26, 13-28, (2001).
  • [2] Manish, S. ve Banerjee, R., Comparison of biohydrogen production processes, International Journal of Hydrogen Energy, 33, 279-286, (2008).
  • [3] Kapdan, Đ.K. ve Kargi, F., Bio-hydrogen production from waste materials, Enzyme and Microbial Technology, 38, 569-582, (2006).
  • [4] Benemann, J.R., Hydrogen production by microalgae, Journal of Applied Phycology, 12, 291-300, (2000).
  • [5] Das, D. ve Veziroğlu, T.N., Advances in biological hydrogen production processes, International Journal of Hydrogen Energy, 33, 6046-6057, (2008).
  • [6] Holladay, J. D., Hu, J., King, D. L. ve Wang, Y., An overview of hydrogen production Technologies, Catalysis Today, 139, 244-260, (2009).
  • [7] Melnicki, M. R., Bianchi, L., Philippis, R. D. ve Melis, A., Hydrogen production during stationary phase in purple photosynthetic bacteria, International Journal of Hydrogen Energy, 2008, 33, 6525-6534, (2008).
  • [8] Basak, N. ve Das, D., Photofermentative hydrogen production using purple nonsulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study, Biomass and Bioenergy, 33, 911-919 (2009).
  • [9] Kapdan, Đ. K., Kargı, F., Öztekin, R. ve Argun, H., Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp, International Journal of Hydrogen Energy, 34, 2201-2207, (2009)
  • [10] Uyar, B., Eroğlu, Đ. ve Yücel, M., Gündüz, U., Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents, International Journal of Hydrogen Energy, 34, 4517-4523, (2009).
  • [11] Nath, K. ve Das, D., Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2008.11.065
  • [12] Obeid, J., Magnin, J. P., Flaus, J. M., Adrot, O., Willison, J. C. ve Zlatev, R., Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus, International Journal of Hydrogen Energy, 34, 180-185, (2009).
  • [13] Li, J., Zheng, G., He, J., Chang, S. ve Qin, Z., Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor, Biotechnology Advances, 27, 573-577, (2009).
  • [14] Urbaniec, K. ve Grabarczyk, R., Raw materials for fermentative hydrogen production, Journal of Cleaner Production,17, 959-962, (2009).
  • [15] Davila-Vazquez, G., Alatriste-Mondragon, F., de Leon-Rodriguez, A. ve RazoFlores, E, Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH, International Journal of Hydrogen Energy, 33, 4989-4997, (2008).
  • [16] Chen, W.H., Sung, S. ve Chen, S.Y., Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effect, International Journal of Hydrogen Energy, 34, 227-234, (2009).
  • [17] Argun, H., Kargi, F. ve Kapdan, Đ.K., Öztekin, R, Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations, International Journal of Hydrogen Energy,33, 6109-6115, (2008).
  • [18] Lin, C.Y., Chang, C.C. ve Hung, C.H., Fermentative hydrogen production from starch using natural mixed culture, International Journal of Hydrogen Energy, 33, 2445-2453, (2008).
  • [19] Lin, C.Y. ve Hung, W.C., Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures, International Journal of Hydrogen Energy, 33, 3660-3667, (2008).
  • [20] Magnusson, L., Islam, R., Sparling, R., Levin, D. ve Çiçek, N., Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process, International Journal of Hydrogen Energy, 33, 5398-5403, (2008).
  • [21] Wang, J. ve Wan, W., Factors influencing fermentative hydrogen production: A review, International Journal of Hydrogen Energy,34, 799-811, (2009).
  • [22] Chong, M.L., Sabaratnam, V., Shirai, Y. ve Hassan, M.A., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy,34, 3277-3287, (2009).
  • [23] Liu, X., Ren, N., Song, F., Yang, C. ve Wang, A., Recent advances in fermentative biohydrogen production, Progress in Natural Science,18, 253-258, (2008).
  • [24] Yuan, Z., Yang, H., Zhi, X. ve Shen J., Enhancement effect of L-cysteine on dark fermentative hydrogen production, International Journal of Hydrogen Energy, 33, 6535-6540, (2008).
  • [25] Davila-Vazquez, G., Cota-Navarro, C. B., Rosales-Colunga, L. M., LeonRodriquez, A. ve Roza-Flores, E., Continuous biohyrdogen production using cheese whey: Improving the hydrogen production rate, International Journal of Hydrogen Energy, 34, 4296-4304, (2009).
  • [26] Krupp, M. ve Widmann, R., Biohydrogen production by dark fermentation: Experiences of continuous operation in large lab scale, International Journal of Hydrogen Energy, 34, 4509-4516, (2009).
  • [27] Babu, V. L., Mohan, S. V. ve Sarma, P. N., Influence of reactor configuration on fermentative hydrogen production during wastewater treatment, International Journal of Hydrogen Energy, 34, 3305-3312, (2009).
  • [28] Wang, B., Wan, W. ve Wang J, Effect of ammonia concentration on fermentative hydrogen production by mixed cultures, Bioresource Technology, 100, 1211-1213, (2009).
  • [29] Kim, D. H., Kim, S. H. ve Shin, H. S., Sodium inhibition of fermentative hydrogen production, International Journal of Hydrogen Energy, 34, 3295-3304, (2009).
  • [30] Kyazze, G., Dinsdale, R., Guwy, A.J., Hawkes, F.R., Premier, G.C. ve Hawkes, D.L., Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously, Biotechnology and Bioengineering, 97, 759-770, (2007).
  • [31] Li, C. ve Fang, H.H.P., Fermentative hydrojen production from wastewater and solid wastes by mixed cultures, Critical Reviews in Environmental Science and Technology, 37, 1-39, (2007).
  • [32] Kraemer, J.T. ve Bagley, D.M., Improving the yield from fermentative hydrogen production, Biotechnology Letters, 29, 685-695, (2007).
  • [33] Argun, H., Kargı, F. ve Kapdan Đ.K., Hydrogen production by combined dark and light fermentation of ground wheat solution, International Journal of Hydrogen Energy, 34, 4305-4311, (2009).
  • [34] Su, H., Cheng, J., Zhou, J., Song, W. ve Cen, K., Improving hydrogen production from cassava starch by combination of dark and photo fermentation, International Journal of Hydrogen Energy, 34, 1780-1786, (2009).
  • [35] Belokopytov, B.F., Laurinavichius, K.S., Laurinavichene, T.V., Ghirardi, M.L., Seibert, M. ve Tsygankov, A.A., Towards the integration of dark- and photofermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production, International Journal of Hydrogen Energy, 34, 3324-3332, (2009).
  • [36] Srikanth, S., Mohan, S.V., Devi, M.P., Peri, D. ve Sarma, P.N., Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2009.05.095.
  • [37] Logan, B.E., Call, D., Cheng, S., Hamelers, H.V.M., Sleutels, T.H.J.A., Jeremiasse, A.W. ve Rozendal, R.A., Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environmental Science and Technology, 42, 8630- 8640, (2008).
  • [38] Wagner, R.C., Regan, J.M., Oh, S.E., Zuo, Y. ve Logan, B.E., Hydrogen and methane production from swine wastewater using microbial electrolysis cells, Water Research, 43, 1480-1488, (2009).
  • [39] Chu, C.F., Li, Y.Y., Xu, K.Q., Ebie, Y. ve Inamori, Y., A pH- and temperaturephase two-stage process for hydrogen and methane production from food waste, International Journal of Hydrogen Energy, 33, 4739-4746, (2008).
  • [40] Xie, B., Cheng, J., Zhou, J., Song, W. ve Cen, K., Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency, International Journal of Hydrogen Energy, 33, 5006-50011, (2008).
  • [41] Wang, X. ve Zhao, Y., A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process, International Journal of Hydrogen Energy, 34, 245-254, (2009).
  • [42] Hallenbeck, P.C., Fermentative hydrogen production: Principles, progress and prognosis, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2008.12.080
  • [43] Hallenbeck, P.C. ve Ghosh, D., Advances in fermentative biohydrogen production: the way forward?, Trends in Biotechnology, 27, 5, 287-297, (2009).
  • [44] Mathews, J. ve Wang, G., Metabolic pathway engineering for enhanced biohydrogen production, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2009.05.078
  • [45] Digman, B. ve Kim, D.S., Review: Alternative energy from food processing wastes, Environmental Progress, 27, 524-537, (2008).

Biological hydrogen production processes

Year 2009, Volume: 11 Issue: 2, 17 - 36, 01.12.2009

Abstract

Hydrogen is a clean energy carrier which has a great potential to be an alternative fuel. There are a variety of technologies for hydrogen production. Biological hydrogen production processes are found to be more environment friendly and less energy intensive as compared to thermochemical and electrochemical processes. Hydrogen can be produced biologically by biophotolysis, photo-fermentation and dark-fermentation by combination of these processes. According to literature, maximum hydrogen yield is found to be 7.1 mol H2/mol glucose. However, major bottlenecks for the commercialization of these processes are lower H2 yield and rate of H2 production. The advancements such as the development of genetically modified microorganism, improvement of operational conditions of process, development of combined process to improve energy conversion efficiency should allow for rapid commercialization of biohydrogen technology

References

  • [1] Das, D. ve Veziroğlu, T.N., Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 26, 13-28, (2001).
  • [2] Manish, S. ve Banerjee, R., Comparison of biohydrogen production processes, International Journal of Hydrogen Energy, 33, 279-286, (2008).
  • [3] Kapdan, Đ.K. ve Kargi, F., Bio-hydrogen production from waste materials, Enzyme and Microbial Technology, 38, 569-582, (2006).
  • [4] Benemann, J.R., Hydrogen production by microalgae, Journal of Applied Phycology, 12, 291-300, (2000).
  • [5] Das, D. ve Veziroğlu, T.N., Advances in biological hydrogen production processes, International Journal of Hydrogen Energy, 33, 6046-6057, (2008).
  • [6] Holladay, J. D., Hu, J., King, D. L. ve Wang, Y., An overview of hydrogen production Technologies, Catalysis Today, 139, 244-260, (2009).
  • [7] Melnicki, M. R., Bianchi, L., Philippis, R. D. ve Melis, A., Hydrogen production during stationary phase in purple photosynthetic bacteria, International Journal of Hydrogen Energy, 2008, 33, 6525-6534, (2008).
  • [8] Basak, N. ve Das, D., Photofermentative hydrogen production using purple nonsulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study, Biomass and Bioenergy, 33, 911-919 (2009).
  • [9] Kapdan, Đ. K., Kargı, F., Öztekin, R. ve Argun, H., Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp, International Journal of Hydrogen Energy, 34, 2201-2207, (2009)
  • [10] Uyar, B., Eroğlu, Đ. ve Yücel, M., Gündüz, U., Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents, International Journal of Hydrogen Energy, 34, 4517-4523, (2009).
  • [11] Nath, K. ve Das, D., Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2008.11.065
  • [12] Obeid, J., Magnin, J. P., Flaus, J. M., Adrot, O., Willison, J. C. ve Zlatev, R., Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus, International Journal of Hydrogen Energy, 34, 180-185, (2009).
  • [13] Li, J., Zheng, G., He, J., Chang, S. ve Qin, Z., Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor, Biotechnology Advances, 27, 573-577, (2009).
  • [14] Urbaniec, K. ve Grabarczyk, R., Raw materials for fermentative hydrogen production, Journal of Cleaner Production,17, 959-962, (2009).
  • [15] Davila-Vazquez, G., Alatriste-Mondragon, F., de Leon-Rodriguez, A. ve RazoFlores, E, Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH, International Journal of Hydrogen Energy, 33, 4989-4997, (2008).
  • [16] Chen, W.H., Sung, S. ve Chen, S.Y., Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effect, International Journal of Hydrogen Energy, 34, 227-234, (2009).
  • [17] Argun, H., Kargi, F. ve Kapdan, Đ.K., Öztekin, R, Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations, International Journal of Hydrogen Energy,33, 6109-6115, (2008).
  • [18] Lin, C.Y., Chang, C.C. ve Hung, C.H., Fermentative hydrogen production from starch using natural mixed culture, International Journal of Hydrogen Energy, 33, 2445-2453, (2008).
  • [19] Lin, C.Y. ve Hung, W.C., Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures, International Journal of Hydrogen Energy, 33, 3660-3667, (2008).
  • [20] Magnusson, L., Islam, R., Sparling, R., Levin, D. ve Çiçek, N., Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process, International Journal of Hydrogen Energy, 33, 5398-5403, (2008).
  • [21] Wang, J. ve Wan, W., Factors influencing fermentative hydrogen production: A review, International Journal of Hydrogen Energy,34, 799-811, (2009).
  • [22] Chong, M.L., Sabaratnam, V., Shirai, Y. ve Hassan, M.A., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy,34, 3277-3287, (2009).
  • [23] Liu, X., Ren, N., Song, F., Yang, C. ve Wang, A., Recent advances in fermentative biohydrogen production, Progress in Natural Science,18, 253-258, (2008).
  • [24] Yuan, Z., Yang, H., Zhi, X. ve Shen J., Enhancement effect of L-cysteine on dark fermentative hydrogen production, International Journal of Hydrogen Energy, 33, 6535-6540, (2008).
  • [25] Davila-Vazquez, G., Cota-Navarro, C. B., Rosales-Colunga, L. M., LeonRodriquez, A. ve Roza-Flores, E., Continuous biohyrdogen production using cheese whey: Improving the hydrogen production rate, International Journal of Hydrogen Energy, 34, 4296-4304, (2009).
  • [26] Krupp, M. ve Widmann, R., Biohydrogen production by dark fermentation: Experiences of continuous operation in large lab scale, International Journal of Hydrogen Energy, 34, 4509-4516, (2009).
  • [27] Babu, V. L., Mohan, S. V. ve Sarma, P. N., Influence of reactor configuration on fermentative hydrogen production during wastewater treatment, International Journal of Hydrogen Energy, 34, 3305-3312, (2009).
  • [28] Wang, B., Wan, W. ve Wang J, Effect of ammonia concentration on fermentative hydrogen production by mixed cultures, Bioresource Technology, 100, 1211-1213, (2009).
  • [29] Kim, D. H., Kim, S. H. ve Shin, H. S., Sodium inhibition of fermentative hydrogen production, International Journal of Hydrogen Energy, 34, 3295-3304, (2009).
  • [30] Kyazze, G., Dinsdale, R., Guwy, A.J., Hawkes, F.R., Premier, G.C. ve Hawkes, D.L., Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously, Biotechnology and Bioengineering, 97, 759-770, (2007).
  • [31] Li, C. ve Fang, H.H.P., Fermentative hydrojen production from wastewater and solid wastes by mixed cultures, Critical Reviews in Environmental Science and Technology, 37, 1-39, (2007).
  • [32] Kraemer, J.T. ve Bagley, D.M., Improving the yield from fermentative hydrogen production, Biotechnology Letters, 29, 685-695, (2007).
  • [33] Argun, H., Kargı, F. ve Kapdan Đ.K., Hydrogen production by combined dark and light fermentation of ground wheat solution, International Journal of Hydrogen Energy, 34, 4305-4311, (2009).
  • [34] Su, H., Cheng, J., Zhou, J., Song, W. ve Cen, K., Improving hydrogen production from cassava starch by combination of dark and photo fermentation, International Journal of Hydrogen Energy, 34, 1780-1786, (2009).
  • [35] Belokopytov, B.F., Laurinavichius, K.S., Laurinavichene, T.V., Ghirardi, M.L., Seibert, M. ve Tsygankov, A.A., Towards the integration of dark- and photofermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production, International Journal of Hydrogen Energy, 34, 3324-3332, (2009).
  • [36] Srikanth, S., Mohan, S.V., Devi, M.P., Peri, D. ve Sarma, P.N., Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2009.05.095.
  • [37] Logan, B.E., Call, D., Cheng, S., Hamelers, H.V.M., Sleutels, T.H.J.A., Jeremiasse, A.W. ve Rozendal, R.A., Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environmental Science and Technology, 42, 8630- 8640, (2008).
  • [38] Wagner, R.C., Regan, J.M., Oh, S.E., Zuo, Y. ve Logan, B.E., Hydrogen and methane production from swine wastewater using microbial electrolysis cells, Water Research, 43, 1480-1488, (2009).
  • [39] Chu, C.F., Li, Y.Y., Xu, K.Q., Ebie, Y. ve Inamori, Y., A pH- and temperaturephase two-stage process for hydrogen and methane production from food waste, International Journal of Hydrogen Energy, 33, 4739-4746, (2008).
  • [40] Xie, B., Cheng, J., Zhou, J., Song, W. ve Cen, K., Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency, International Journal of Hydrogen Energy, 33, 5006-50011, (2008).
  • [41] Wang, X. ve Zhao, Y., A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process, International Journal of Hydrogen Energy, 34, 245-254, (2009).
  • [42] Hallenbeck, P.C., Fermentative hydrogen production: Principles, progress and prognosis, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2008.12.080
  • [43] Hallenbeck, P.C. ve Ghosh, D., Advances in fermentative biohydrogen production: the way forward?, Trends in Biotechnology, 27, 5, 287-297, (2009).
  • [44] Mathews, J. ve Wang, G., Metabolic pathway engineering for enhanced biohydrogen production, International Journal of Hydrogen Energy, 2009, doi: 10.1016/j.ijhydene.2009.05.078
  • [45] Digman, B. ve Kim, D.S., Review: Alternative energy from food processing wastes, Environmental Progress, 27, 524-537, (2008).
There are 45 citations in total.

Details

Other ID JA22DF54DY
Journal Section Research Articles
Authors

N. Genç This is me

Publication Date December 1, 2009
Submission Date December 1, 2009
Published in Issue Year 2009 Volume: 11 Issue: 2

Cite

APA Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
AMA Genç N. Biyolojik hidrojen üretim prosesleri. BAUN Fen. Bil. Enst. Dergisi. December 2009;11(2):17-36.
Chicago Genç, N. “Biyolojik Hidrojen üretim Prosesleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11, no. 2 (December 2009): 17-36.
EndNote Genç N (December 1, 2009) Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11 2 17–36.
IEEE N. Genç, “Biyolojik hidrojen üretim prosesleri”, BAUN Fen. Bil. Enst. Dergisi, vol. 11, no. 2, pp. 17–36, 2009.
ISNAD Genç, N. “Biyolojik Hidrojen üretim Prosesleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11/2 (December 2009), 17-36.
JAMA Genç N. Biyolojik hidrojen üretim prosesleri. BAUN Fen. Bil. Enst. Dergisi. 2009;11:17–36.
MLA Genç, N. “Biyolojik Hidrojen üretim Prosesleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 11, no. 2, 2009, pp. 17-36.
Vancouver Genç N. Biyolojik hidrojen üretim prosesleri. BAUN Fen. Bil. Enst. Dergisi. 2009;11(2):17-36.