Araştırma Makalesi
BibTex RIS Kaynak Göster

Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri

Yıl 2018, Cilt: 20 Sayı: 1, 83 - 93, 28.05.2018
https://doi.org/10.25092/baunfbed.427766

Öz

İleri oksidasyon teknolojilerinden biri olan fotokatalitik bozunma, organik kirleticilerin temizlenmesinde ve su arıtımında ümit verici yöntemlerden biri olmaya başlamıştır.  Fotokatalistler arasında en dikkat çekeni ise, yüksek fotoaktiviteye sahip, kararlı ve düşük maliyetli olan titanyum dioksit (TiO2) yarı iletken malzemesidir.  Bu çalışmada TiO2 kaplamalar, fosforik asit (H3PO4) içerikli elektrolit içerisinde saf titanyumun anodik spark oksitleme metodu ile anotlanması sonucu üretilmiştir.  Farklı elektrolit konsantrasyonlarının (0.25-2 M H3PO4) altık yüzeyinde oluşan TiO2’nin mikroyapısına, yüzey morfolojisine ve fotokatalitik performansına olan etkileri incelenmiştir.  TiO2 kaplamaların kristalin fazları X ışını kırınım cihazı (XRD) ile belirlenmiştir.  Yüzeylerin mikroyapısı, taramalı elektron mikroskobu (SEM) ile analiz edilmiştir.  Örneklerin fotokatalitik aktivite testleri, farklı zaman aralıklarında UV ışık altında metilen mavisi çözeltisinin bozundurma çalışmaları ile saptanmıştır.  En yüksek fotokatalitik aktivite 1 M elektrolit konsantrasyonunda üretilen TiO2 kaplamasında elde edilmiştir.  Deneysel çalışma sonuçları, hem morfolojideki hem de kristal yapıdaki değişikliklerin TiO2 kaplamaların fotoaktivitesi üzerinde güçlü bir etkiye sahip olduğunu göstermiştir. 

Kaynakça

  • Liu, G., Wang, L.Z., Yang, H.G., Cheng, H.M. ve Lu, G.Q., Titania-based photocatalysts-crystal growth, doping and heterostructuring, Journal of Materials Chemistry, 20, 5, 831-834, (2010).
  • Luo, Q., Li, X., Li, X., Wang, D., An, J. ve Li, X.,. Visible light photocatalytic activity of TiO2 nanoparticles modified by pre-oxidized polyacrylonitrile, Catalysis Communications, 26, 239-243, (2012).
  • Masahashi, N., Mizukoshi, Y., Semboshi, S. ve Ohtsu, N., Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte, Applied Catalysis B: Environmental, 90, 255-261, (2009).
  • Fujishima, A., Rao, T.N. ve Tryk, D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry, 1, 1-21, (2000).
  • Radecka, M. Rekas, M. Trenczek-Zajac, A. ve Zakrzewska, K., Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, Journal of Power Sources, 181, 1, 46-55, (2008).
  • Linsebigler, A.L., Lu, G.Q. ve Yates Jr J.T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95, 3, 735-758, (1995).
  • Chen, X.B. ve Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chemical Reviews, 107, 7, 2891-2959, (2007).
  • Carp, O., Huisman, C.L. ve Reller, A., Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32, 1-2, 33-177, (2004).
  • Liu, G., Wang, X. Chen, Z., Cheng, H.-M. ve Lu, G.Q., The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2, Journal of Colloid and Interface Science, 329, 2, 331–338, (2009).
  • Puddu, V., Choi, H., Dionysiou, D.D. ve Li Puma, G., TiO2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation, Applied Catalysis B: Environmental B, 94, 3-4, 211–218, (2010).
  • Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J. ve Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2, Applied Catalysis B: Environmental, 89, 3-4, 494-502. (2009).
  • Žunič, V., Škapin, S.D., Maček-Kržmanc, M., Bračko, I., Škapin, A.S. ve Suvorov, D., Influence of the triblock copolymer P123 and phosphorous on the physico-chemical properties of TiO2, Applied Catalysis A: General, 397, 1-2, 241-249, (2011).
  • Diebold, U., The surface science of titanium dioxide, Surface science reports, 48, 5-8, 53-229, (2003).
  • Yang, G., Yan, Z., Xiao, T. ve Yang, B., Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange, Journal of Alloys and Compounds, 580, 15-22, (2013).
  • Fujishima, A., Hashimoto, K. ve Watanabe, T., TiO2 Photocatalysis: Fundamentals and Applications, BKC, Inc Publishers, Japan. (1999).
  • Şam, E.D., Ürgen, Ü. ve Tepehan, F.Z., TiO2 fotokatalistleri, İTÜ Fen Bilimleri Dergisi, 6, 81-92, (2007).
  • Tomandl, G., Mangler, M., Pippel, E. ve Woltersdorf J., Evidence of nanopores in sol–gel based TiO2 and TiN ultrafiltration membranes, Materials Chemistry and Physics, 63, 2, 139-144, (2000).
  • Tesfamichael, T., Motta, N., Bostrom, T. ve Bell, J.M., Development of porous metal oxide thin films by co-evaporation, Applied Surface Science, 253, 11, 4853-4859. (2007).
  • Leenheer, A.J., Miedaner, A., Curtis, C.J., Hest, MFAMV. ve Ginley, D.S., Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films, Journal of Materials Research, 22, 3, 681-687, (2007).
  • Komarov, F.F., Vlasukova, L.A., Milchanin, O.M., Gaiduk, P.I., Yuvchenko, V.N. ve Grechnyi, S.S., Ion-beam formation of nanopores and nanoclusters in SiO2, Vacuum, 78, 2-4, 361–366, (2005).
  • Sulka, G.D., Kolodziej, J.K., Brzozka, A. ve Jaskula. M., Fabrication of nanoporous TiO2 by electrochemical anodization, Electrochimica Acta, 55, 14, 4359–4367, (2010).
  • Wu, K.R., Hung, C.H., Yeh, C.W. ve Wu, J.K., Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering, Applied Surface Science, 263, 688-695, (2012).
  • Bayati, M.R., Golestani-Fard, F. ve Moshfegh, A.Z., How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?, Applied Surface Science, 256, 13, 4253-4259, (2010).
  • Sul, Y-T., Johansson, C.B., Jeong, Y. ve Albrektsson, T., The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Medical Engineering and Physics, 23, 5, 329-346, (2001).
  • Chen, Z.X., Takao, Y., Wang, W.X., Matsubara, T. ve Ren, L. M., Surface characteristics and in vitro biocompatibility of titanium anodized in a phosphoric acid solution at different voltages, Biomedical Materials, 6, 065003, (2009).
  • Pedeferri, M., Del Curto, B. ve Pedeferri, P., Chromatic properties of anodised titanium obtained with two techniques. In Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, 205-210, (2006).
  • Krasicka-Cydzik, E., Głazowska, I. ve Michalski, M., Hydroxyapatite coatings on titanium and its alloys anodised in H3PO4. EUROMAT 2005, European Congress on Advanced Materials and Processes. Prague, Czech Rep, (2005).
  • Park, Y.J., Shin, K.H. ve Song, H.J., Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate, Applied Surface Science, 253, 14, 6013-6018, (2007).
  • Diamanti, M.V. ve Pedeferri, M.P., Effect of anodic oxidation parameters on the titanium oxides formation, Corrosion Science, 49, 2, 939-948, (2007).
  • Yu, J.G., Xiong, J.F., Cheng, B. ve Liu, S.W., Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 60, 3-4, 211-221, (2005).
  • Chen, Z.X., Takao, Y., Wang, W.X., Matsubara, T. ve Ren, L.M., Surface characteristics and in vitro biocompatibility of titanium anodized in a phosphoric acid solution at different voltages, Biomedical Materials, 4, 6, 065003, (2009).
  • Li, X.Z., Li, F.B., Yang, C.L. ve Ge W.K., Photocatalytic activity of WOx–TiO2 under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 141, 2-3, 209-217, (2001).
  • Pirzada, B.M., Mir, N.A., Qutub, N., Mehraj, O., Sabir, S. ve Muneer M., Synthesis Characterization and Optimization of Photocatalytic Activity of TiO2/ZrO2 Nanocomposite Heterostructures, Material Science and Engineering B, 193, 137-145, (2015).

Characterization and photocatalytic properties of TiO2 coatings produced by anodic spark oxidation

Yıl 2018, Cilt: 20 Sayı: 1, 83 - 93, 28.05.2018
https://doi.org/10.25092/baunfbed.427766

Öz

Photocatalytic degradation, one of the advanced oxidation technologies, has begun to be one of the promising methods for cleaning organic contaminants and for water treatment.  The most notable among photocatalysts is titanium dioxide (TiO2) semiconducting material with high photoactivity, stable and low cost.  In this study, TiO2 coatings were produced by anodic spark oxidation method on pure titanium in H3PO4 containing electrolyte.  The effects of different electrolyte concentrations (0.25-2 M H3PO4) on the microstructure, surface morphology and photocatalytic performance of TiO2 coatings have been investigated.  The crystalline phases of the TiO2 coatings obtained were determined by XRD.  The microstructure of the surfaces was analyzed by SEM.  The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue solutions under UV light at different time intervals.  The highest photocatalytic activity was obtained in the TiO2 coating produced in a 1 M electrolyte concentration.  The results indicated that changes in both the morphology and crystalline structure have a strong influence on the photoactivity of the TiO2 coatings. 

Kaynakça

  • Liu, G., Wang, L.Z., Yang, H.G., Cheng, H.M. ve Lu, G.Q., Titania-based photocatalysts-crystal growth, doping and heterostructuring, Journal of Materials Chemistry, 20, 5, 831-834, (2010).
  • Luo, Q., Li, X., Li, X., Wang, D., An, J. ve Li, X.,. Visible light photocatalytic activity of TiO2 nanoparticles modified by pre-oxidized polyacrylonitrile, Catalysis Communications, 26, 239-243, (2012).
  • Masahashi, N., Mizukoshi, Y., Semboshi, S. ve Ohtsu, N., Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte, Applied Catalysis B: Environmental, 90, 255-261, (2009).
  • Fujishima, A., Rao, T.N. ve Tryk, D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry, 1, 1-21, (2000).
  • Radecka, M. Rekas, M. Trenczek-Zajac, A. ve Zakrzewska, K., Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, Journal of Power Sources, 181, 1, 46-55, (2008).
  • Linsebigler, A.L., Lu, G.Q. ve Yates Jr J.T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95, 3, 735-758, (1995).
  • Chen, X.B. ve Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chemical Reviews, 107, 7, 2891-2959, (2007).
  • Carp, O., Huisman, C.L. ve Reller, A., Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32, 1-2, 33-177, (2004).
  • Liu, G., Wang, X. Chen, Z., Cheng, H.-M. ve Lu, G.Q., The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2, Journal of Colloid and Interface Science, 329, 2, 331–338, (2009).
  • Puddu, V., Choi, H., Dionysiou, D.D. ve Li Puma, G., TiO2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation, Applied Catalysis B: Environmental B, 94, 3-4, 211–218, (2010).
  • Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J. ve Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2, Applied Catalysis B: Environmental, 89, 3-4, 494-502. (2009).
  • Žunič, V., Škapin, S.D., Maček-Kržmanc, M., Bračko, I., Škapin, A.S. ve Suvorov, D., Influence of the triblock copolymer P123 and phosphorous on the physico-chemical properties of TiO2, Applied Catalysis A: General, 397, 1-2, 241-249, (2011).
  • Diebold, U., The surface science of titanium dioxide, Surface science reports, 48, 5-8, 53-229, (2003).
  • Yang, G., Yan, Z., Xiao, T. ve Yang, B., Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange, Journal of Alloys and Compounds, 580, 15-22, (2013).
  • Fujishima, A., Hashimoto, K. ve Watanabe, T., TiO2 Photocatalysis: Fundamentals and Applications, BKC, Inc Publishers, Japan. (1999).
  • Şam, E.D., Ürgen, Ü. ve Tepehan, F.Z., TiO2 fotokatalistleri, İTÜ Fen Bilimleri Dergisi, 6, 81-92, (2007).
  • Tomandl, G., Mangler, M., Pippel, E. ve Woltersdorf J., Evidence of nanopores in sol–gel based TiO2 and TiN ultrafiltration membranes, Materials Chemistry and Physics, 63, 2, 139-144, (2000).
  • Tesfamichael, T., Motta, N., Bostrom, T. ve Bell, J.M., Development of porous metal oxide thin films by co-evaporation, Applied Surface Science, 253, 11, 4853-4859. (2007).
  • Leenheer, A.J., Miedaner, A., Curtis, C.J., Hest, MFAMV. ve Ginley, D.S., Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films, Journal of Materials Research, 22, 3, 681-687, (2007).
  • Komarov, F.F., Vlasukova, L.A., Milchanin, O.M., Gaiduk, P.I., Yuvchenko, V.N. ve Grechnyi, S.S., Ion-beam formation of nanopores and nanoclusters in SiO2, Vacuum, 78, 2-4, 361–366, (2005).
  • Sulka, G.D., Kolodziej, J.K., Brzozka, A. ve Jaskula. M., Fabrication of nanoporous TiO2 by electrochemical anodization, Electrochimica Acta, 55, 14, 4359–4367, (2010).
  • Wu, K.R., Hung, C.H., Yeh, C.W. ve Wu, J.K., Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering, Applied Surface Science, 263, 688-695, (2012).
  • Bayati, M.R., Golestani-Fard, F. ve Moshfegh, A.Z., How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?, Applied Surface Science, 256, 13, 4253-4259, (2010).
  • Sul, Y-T., Johansson, C.B., Jeong, Y. ve Albrektsson, T., The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Medical Engineering and Physics, 23, 5, 329-346, (2001).
  • Chen, Z.X., Takao, Y., Wang, W.X., Matsubara, T. ve Ren, L. M., Surface characteristics and in vitro biocompatibility of titanium anodized in a phosphoric acid solution at different voltages, Biomedical Materials, 6, 065003, (2009).
  • Pedeferri, M., Del Curto, B. ve Pedeferri, P., Chromatic properties of anodised titanium obtained with two techniques. In Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, 205-210, (2006).
  • Krasicka-Cydzik, E., Głazowska, I. ve Michalski, M., Hydroxyapatite coatings on titanium and its alloys anodised in H3PO4. EUROMAT 2005, European Congress on Advanced Materials and Processes. Prague, Czech Rep, (2005).
  • Park, Y.J., Shin, K.H. ve Song, H.J., Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate, Applied Surface Science, 253, 14, 6013-6018, (2007).
  • Diamanti, M.V. ve Pedeferri, M.P., Effect of anodic oxidation parameters on the titanium oxides formation, Corrosion Science, 49, 2, 939-948, (2007).
  • Yu, J.G., Xiong, J.F., Cheng, B. ve Liu, S.W., Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 60, 3-4, 211-221, (2005).
  • Chen, Z.X., Takao, Y., Wang, W.X., Matsubara, T. ve Ren, L.M., Surface characteristics and in vitro biocompatibility of titanium anodized in a phosphoric acid solution at different voltages, Biomedical Materials, 4, 6, 065003, (2009).
  • Li, X.Z., Li, F.B., Yang, C.L. ve Ge W.K., Photocatalytic activity of WOx–TiO2 under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 141, 2-3, 209-217, (2001).
  • Pirzada, B.M., Mir, N.A., Qutub, N., Mehraj, O., Sabir, S. ve Muneer M., Synthesis Characterization and Optimization of Photocatalytic Activity of TiO2/ZrO2 Nanocomposite Heterostructures, Material Science and Engineering B, 193, 137-145, (2015).
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Tuncay Dikici

Metin Yurddaşkal

Yayımlanma Tarihi 28 Mayıs 2018
Gönderilme Tarihi 2 Ağustos 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 1

Kaynak Göster

APA Dikici, T., & Yurddaşkal, M. (2018). Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 83-93. https://doi.org/10.25092/baunfbed.427766
AMA Dikici T, Yurddaşkal M. Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2018;20(1):83-93. doi:10.25092/baunfbed.427766
Chicago Dikici, Tuncay, ve Metin Yurddaşkal. “Anodik Spark Oksitleme tekniği Ile üretilen Titanyum Dioksit (TiO2) kaplamaların Karakterizasyonu Ve Fotokatalitik özellikleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 1 (Temmuz 2018): 83-93. https://doi.org/10.25092/baunfbed.427766.
EndNote Dikici T, Yurddaşkal M (01 Temmuz 2018) Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 1 83–93.
IEEE T. Dikici ve M. Yurddaşkal, “Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 1, ss. 83–93, 2018, doi: 10.25092/baunfbed.427766.
ISNAD Dikici, Tuncay - Yurddaşkal, Metin. “Anodik Spark Oksitleme tekniği Ile üretilen Titanyum Dioksit (TiO2) kaplamaların Karakterizasyonu Ve Fotokatalitik özellikleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/1 (Temmuz 2018), 83-93. https://doi.org/10.25092/baunfbed.427766.
JAMA Dikici T, Yurddaşkal M. Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri. BAUN Fen. Bil. Enst. Dergisi. 2018;20:83–93.
MLA Dikici, Tuncay ve Metin Yurddaşkal. “Anodik Spark Oksitleme tekniği Ile üretilen Titanyum Dioksit (TiO2) kaplamaların Karakterizasyonu Ve Fotokatalitik özellikleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 1, 2018, ss. 83-93, doi:10.25092/baunfbed.427766.
Vancouver Dikici T, Yurddaşkal M. Anodik spark oksitleme tekniği ile üretilen titanyum dioksit (TiO2) kaplamaların karakterizasyonu ve fotokatalitik özellikleri. BAUN Fen. Bil. Enst. Dergisi. 2018;20(1):83-9.