Research Article
BibTex RIS Cite

Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds

Year 2018, Volume: 20 Issue: 2, 124 - 134, 01.12.2018
https://doi.org/10.25092/baunfbed.423270

Abstract

In this study novel
fluorescence active, two triazine based thiazole derivatives,  (2R,2'R)-2,4,6-triamine-N2-[2-(4-benzothiazolyl)phenyl]-N4,N6-[di(butan-1-ol)]-1,3,5-triazine
and (1S,1'S,2R,2'R)-2,4,6-triamine-N2-[2-(4-benzothiazolyl)phenyl]-N4,N6-[di(1,2-diphenylethanol)]-1,3,5-triazine
with chiral aminoalcohol groups were synthesized conveniently. Their
enantiomeric recognition abilities toward the enantiomers of carboxylic acids
such as mandelic acid and 2-chloromandelic acid were examined in DMSO/H2O
(30:70) system using fluorescence spectroscopy. It was observed that DMSO
solutions of chiral selectors showed no fluorescence emission while the
emission increased 38 and 43 fold in 95% H2O for butan-1-ol and
diphenylethanol derivatives, respectively similar with the aggregation-induced
emission (AIE) characterized compounds. In the light of the experiment results,
it was determined that the R-isomers of carboxylic acids formed more favourable
complexes with the chiral selectors when compared to S-isomers.

References

  • Dong, J., Zhou, Y., Zhang, F. and Cui, Y., A Highly Fluorescent Metallosalalen-Based Chiral Cage for Enantioselective Recognition and Sensing, Chemistry A European Journal, 20, 6455-6461, (2014).
  • Zhao, C., Ouyang, K., Zhang, J. and Yang, N., Chiral fluorescence polyethers based on BINOL for enantioselective recognition of phenylalanine anion, Polymer, 93, 9-13, (2016).
  • Ghosh, K. and Majumdar, A., Isomeric chiral pyrrole diamides and their efficacy in enantioselective sensing of tartrate in sol-gel medium, Tetrahedron Letters, 57, 3629-3634, (2016).
  • Ikai, T., Yun, C., Kojima, Y., Suzuki, D., Maeda, K. and Kanoh, S., Development of Amylose- and -Cyclodextrin-Based Chiral Fluorescent Sensors Bearing Terthienyl Pendants, Molecules, 21, 1518-1529, (2016).
  • Seifert, H.M., Jiang, Y.-B. and Anslyn, E.V., Exploitation of the majority rules effect for the accurate measurement of high enantiomeric excess values using CD spectroscopy, Chemical Communications, 50, 15330-15332, (2014).
  • Wolf, C., Stereolabile chiral compounds: analysis by dynamic chromatography and stopped-flow methods, Chemical Society Reviews, 34, 595-608, (2005).
  • Khose, V.N., John, M.E., Pandey, A.D., Borovkov, V. and Karnik, A.V., Chiral Heterocycle-Based Receptors for Enantioselective Recognition, Symmetry, 10, 34-108, (2018).
  • Bozkurt, S., Turkmen, M.B. and Soykan, C., Synthesis of new chiral calix[4]arene thiourea derivatives for enantiomeric recognition of carboxylate anions, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 84, 35-41, (2016).
  • Fu, Z.-H., Yan, L.-B., Zhang, X., Zhu, F.-F., Han, X.-L., Fang, J., Wang, Y.-W. and Peng, Y., A fluorescein-based chemosensor for relay fluorescence recognition of Cu(II) ions and biothiols in water and its applications to molecular logic gate and living cell imaging, Organic  Biomolecular Chemistry, 15, 4115-4121, (2017).
  • Pal, D., Moczar, I., Kormos, A., Baranyai, P. and Huszthy, P., Synthesis and enantiomeric recognition studies of optically active 5,5-dioxophenothiazine bis(urea) and bis(thiourea) derivatives, Tetrahedron: Asymmetry, 27, 918-922, (2016).
  • Heo, J. and Mirkin, C.A., Pseudo-allosteric recognition of mandelic acid with an enantioselective coordination complex, Angewandte Chemie, International Edition, 45, 941-944, (2006).
  • Huang, H., Yang, W. and Deng, J., Chiral, fluorescent microparticles constructed by optically active helical substituted polyacetylene: preparation and enantioselective recognition ability, RSC Advances, 5, 26236-26245, (2015).
  • Wang, C., Wu, E., Wu, X., Xu, X., Zhang, G. and Pu, L., Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition, Journal of the American Chemical Society, 137, 3747-3750, (2015).
  • Bozkurt, S. and Türkmen, M.B., New chiral oxo-bridged calix[2]arene[2]triazine for the enantiomeric recognition of -racemic carboxylic acids, Tetrahedron: Asymmetry, 27, 443-447, (2016).
  • Li, G., Cao, J., Zong, W., Lei, X. and Tan, R., Enantiodiscrimination of carboxylic acids using the diphenylprolinol NMR chiral solvating agents, Organic Chemistry Frontiers, 3, 96-102, (2016).
  • Ikai, T., Suzuki, D., Kojima, Y., Yun, C., Maeda, K. and Kanoh, S., Chiral fluorescent sensors based on cellulose derivatives bearing terthienyl pendants, Polymer Chemistry, 7, 4793-4801, (2016).
  • Pu, L., Fluorescence of organic molecules in chiral recognition, Chemical Reviews, 104, 1687-1716, (2004).
  • Ooyama, Y., Sugino, M., Enoki, T., Yamamoto, K., Tsunoji, N. and Ohshita, J., Aggregation-induced emission (AIE) characteristic of water-soluble tetraphenylethene (TPE) bearing four sulfonate salts, New Journal of Chemistry, 41, 4747-4749, (2017).
  • Xiong, J.-B., Xie, W.-Z., Sun, J.-P., Wang, J.-H., Zhu, Z.-H., Feng, H.-T., Guo, D., Zhang, H. and Zheng, Y.-S., Enantioselective recognition for many different kinds of chiral guests by one chiral receptor based on tetraphenylethylene cyclohexylbisurea, Journal of Organic Chemistry, 81, 3720-3726, (2016).
  • Xu, K.-X., Jiao, S.-Y., Yao, W.-Y., Kong, H.-J., Zhang, J.-L. and Wang, C.-J., Syntheses and highly enantioselective fluorescent recognition of -hydroxyl/amino carboxylic acid anions in protic solutions, Sensors and Actuators B: Chemical, 177, 384-389, (2013).
  • Ghosh, K. and Sarkar, T., Anthracene-labeled pyridinium-based symmetrical chiral chemosensor for enantioselective recognition of L-tartrate, Tetrahedron Letters, 55, 1342-1346, (2014).
  • Halay, E. and Bozkurt ,S., Enantioselective recognition of carboxylic acids by novel fluorescent triazine-based thiazoles, Chirality, 30, 275-283, (2018).
  • Shi, H., Zhang, X., Gui, C., Wang, S., Fang, L., Zhao, Z., Chen, S. and Tang, B.Z., Synthesis, aggregation-induced emission and electroluminescence properties of three new phenylethylene derivatives comprising carbazole and (dimesitylboranyl)phenyl groups, Journal of Materials Chemistry C, 5, 11741-11750, (2017).
  • Zhang, H., Li, H., Wang, J., Sun, J., Qin, A. and Tang, B.Z., Axial chiral aggregation-induced emission luminogens with aggregation-annihilated circular dichroism effect, Journal of Materials Chemistry C, 3, 5162-5166, (2015).
  • Feng, H.-T., Zhang, X. and Zheng, Y.-S., Fluorescence turn-on enantioselective recognition of both chiral acidic compounds and -amino acids by a chiral tetraphenylethylene macrocycle amine, Journal of Organic Chemistry, 80, 8096-8101, (2015).

Triazin bazlı kiral floresans bileşiklerin sentezi ve enantiyomerik tanınma çalışmaları

Year 2018, Volume: 20 Issue: 2, 124 - 134, 01.12.2018
https://doi.org/10.25092/baunfbed.423270

Abstract

Bu çalışmada yeni floresans aktif, iki adet triazin bazlı tiyazol
türevleri, (2R,2'R)-2,4,6-triamin-N2-[2-(4-benzotiyazolil)fenil]-N4,N6-[di(bütan-1-ol)]-1,3,5-triazin
ve (1S,1'S, 2R,2'R)-2,4,6-triamin-N2-[2-(4-benzotiyazolil)fenil]-N4,N6-[di(1,2-difenil
etanol)]-1,3,5-triazin uygun şekilde sentezlendi. İlgili bileşiklerin, mandelik
asit ve 2-kloromandelik asit gibi karboksilik asit enantiyomerlerine karşı
enantiyomerik tanıma yetenekleri, DMSO/H2O (30:70) sisteminde
floresans spektroskopisi aracılığıyla incelendi. Kiral seçicilerin DMSO
çözeltileri floresans emisyonu göstermez iken, %95 su yüzdesine çıkıldığında,
agregasyona bağlı emisyon karakterli bileşiklere benzer olarak emisyonun
sırasıyla bütan-1-ol ve difeniletanol türevleri için 38 ve 43 kat arttığı
gözlemlendi. Deney sonuçları ışığında, karboksilik asitlerin R-izomerlerinin,
S-izomerleri ile karşılaştırıldığında kiral seçiciler ile daha uygun
kompleksler oluşturduğu saptandı. 

References

  • Dong, J., Zhou, Y., Zhang, F. and Cui, Y., A Highly Fluorescent Metallosalalen-Based Chiral Cage for Enantioselective Recognition and Sensing, Chemistry A European Journal, 20, 6455-6461, (2014).
  • Zhao, C., Ouyang, K., Zhang, J. and Yang, N., Chiral fluorescence polyethers based on BINOL for enantioselective recognition of phenylalanine anion, Polymer, 93, 9-13, (2016).
  • Ghosh, K. and Majumdar, A., Isomeric chiral pyrrole diamides and their efficacy in enantioselective sensing of tartrate in sol-gel medium, Tetrahedron Letters, 57, 3629-3634, (2016).
  • Ikai, T., Yun, C., Kojima, Y., Suzuki, D., Maeda, K. and Kanoh, S., Development of Amylose- and -Cyclodextrin-Based Chiral Fluorescent Sensors Bearing Terthienyl Pendants, Molecules, 21, 1518-1529, (2016).
  • Seifert, H.M., Jiang, Y.-B. and Anslyn, E.V., Exploitation of the majority rules effect for the accurate measurement of high enantiomeric excess values using CD spectroscopy, Chemical Communications, 50, 15330-15332, (2014).
  • Wolf, C., Stereolabile chiral compounds: analysis by dynamic chromatography and stopped-flow methods, Chemical Society Reviews, 34, 595-608, (2005).
  • Khose, V.N., John, M.E., Pandey, A.D., Borovkov, V. and Karnik, A.V., Chiral Heterocycle-Based Receptors for Enantioselective Recognition, Symmetry, 10, 34-108, (2018).
  • Bozkurt, S., Turkmen, M.B. and Soykan, C., Synthesis of new chiral calix[4]arene thiourea derivatives for enantiomeric recognition of carboxylate anions, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 84, 35-41, (2016).
  • Fu, Z.-H., Yan, L.-B., Zhang, X., Zhu, F.-F., Han, X.-L., Fang, J., Wang, Y.-W. and Peng, Y., A fluorescein-based chemosensor for relay fluorescence recognition of Cu(II) ions and biothiols in water and its applications to molecular logic gate and living cell imaging, Organic  Biomolecular Chemistry, 15, 4115-4121, (2017).
  • Pal, D., Moczar, I., Kormos, A., Baranyai, P. and Huszthy, P., Synthesis and enantiomeric recognition studies of optically active 5,5-dioxophenothiazine bis(urea) and bis(thiourea) derivatives, Tetrahedron: Asymmetry, 27, 918-922, (2016).
  • Heo, J. and Mirkin, C.A., Pseudo-allosteric recognition of mandelic acid with an enantioselective coordination complex, Angewandte Chemie, International Edition, 45, 941-944, (2006).
  • Huang, H., Yang, W. and Deng, J., Chiral, fluorescent microparticles constructed by optically active helical substituted polyacetylene: preparation and enantioselective recognition ability, RSC Advances, 5, 26236-26245, (2015).
  • Wang, C., Wu, E., Wu, X., Xu, X., Zhang, G. and Pu, L., Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition, Journal of the American Chemical Society, 137, 3747-3750, (2015).
  • Bozkurt, S. and Türkmen, M.B., New chiral oxo-bridged calix[2]arene[2]triazine for the enantiomeric recognition of -racemic carboxylic acids, Tetrahedron: Asymmetry, 27, 443-447, (2016).
  • Li, G., Cao, J., Zong, W., Lei, X. and Tan, R., Enantiodiscrimination of carboxylic acids using the diphenylprolinol NMR chiral solvating agents, Organic Chemistry Frontiers, 3, 96-102, (2016).
  • Ikai, T., Suzuki, D., Kojima, Y., Yun, C., Maeda, K. and Kanoh, S., Chiral fluorescent sensors based on cellulose derivatives bearing terthienyl pendants, Polymer Chemistry, 7, 4793-4801, (2016).
  • Pu, L., Fluorescence of organic molecules in chiral recognition, Chemical Reviews, 104, 1687-1716, (2004).
  • Ooyama, Y., Sugino, M., Enoki, T., Yamamoto, K., Tsunoji, N. and Ohshita, J., Aggregation-induced emission (AIE) characteristic of water-soluble tetraphenylethene (TPE) bearing four sulfonate salts, New Journal of Chemistry, 41, 4747-4749, (2017).
  • Xiong, J.-B., Xie, W.-Z., Sun, J.-P., Wang, J.-H., Zhu, Z.-H., Feng, H.-T., Guo, D., Zhang, H. and Zheng, Y.-S., Enantioselective recognition for many different kinds of chiral guests by one chiral receptor based on tetraphenylethylene cyclohexylbisurea, Journal of Organic Chemistry, 81, 3720-3726, (2016).
  • Xu, K.-X., Jiao, S.-Y., Yao, W.-Y., Kong, H.-J., Zhang, J.-L. and Wang, C.-J., Syntheses and highly enantioselective fluorescent recognition of -hydroxyl/amino carboxylic acid anions in protic solutions, Sensors and Actuators B: Chemical, 177, 384-389, (2013).
  • Ghosh, K. and Sarkar, T., Anthracene-labeled pyridinium-based symmetrical chiral chemosensor for enantioselective recognition of L-tartrate, Tetrahedron Letters, 55, 1342-1346, (2014).
  • Halay, E. and Bozkurt ,S., Enantioselective recognition of carboxylic acids by novel fluorescent triazine-based thiazoles, Chirality, 30, 275-283, (2018).
  • Shi, H., Zhang, X., Gui, C., Wang, S., Fang, L., Zhao, Z., Chen, S. and Tang, B.Z., Synthesis, aggregation-induced emission and electroluminescence properties of three new phenylethylene derivatives comprising carbazole and (dimesitylboranyl)phenyl groups, Journal of Materials Chemistry C, 5, 11741-11750, (2017).
  • Zhang, H., Li, H., Wang, J., Sun, J., Qin, A. and Tang, B.Z., Axial chiral aggregation-induced emission luminogens with aggregation-annihilated circular dichroism effect, Journal of Materials Chemistry C, 3, 5162-5166, (2015).
  • Feng, H.-T., Zhang, X. and Zheng, Y.-S., Fluorescence turn-on enantioselective recognition of both chiral acidic compounds and -amino acids by a chiral tetraphenylethylene macrocycle amine, Journal of Organic Chemistry, 80, 8096-8101, (2015).
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Erkan Halay

Selahattin Bozkurt

Publication Date December 1, 2018
Submission Date March 30, 2018
Published in Issue Year 2018 Volume: 20 Issue: 2

Cite

APA Halay, E., & Bozkurt, S. (2018). Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 124-134. https://doi.org/10.25092/baunfbed.423270
AMA Halay E, Bozkurt S. Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. December 2018;20(2):124-134. doi:10.25092/baunfbed.423270
Chicago Halay, Erkan, and Selahattin Bozkurt. “Synthesis and Enantiomeric Recognition Studies of Triazine-Based Chiral Fluorescent Compounds”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 2 (December 2018): 124-34. https://doi.org/10.25092/baunfbed.423270.
EndNote Halay E, Bozkurt S (December 1, 2018) Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 2 124–134.
IEEE E. Halay and S. Bozkurt, “Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 2, pp. 124–134, 2018, doi: 10.25092/baunfbed.423270.
ISNAD Halay, Erkan - Bozkurt, Selahattin. “Synthesis and Enantiomeric Recognition Studies of Triazine-Based Chiral Fluorescent Compounds”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/2 (December2018), 124-134. https://doi.org/10.25092/baunfbed.423270.
JAMA Halay E, Bozkurt S. Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;20:124–134.
MLA Halay, Erkan and Selahattin Bozkurt. “Synthesis and Enantiomeric Recognition Studies of Triazine-Based Chiral Fluorescent Compounds”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 2, 2018, pp. 124-3, doi:10.25092/baunfbed.423270.
Vancouver Halay E, Bozkurt S. Synthesis and enantiomeric recognition studies of triazine-based chiral fluorescent compounds. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;20(2):124-3.