Research Article
BibTex RIS Cite

Beyin dokusunun moleküler saçılma fonksiyonu verileri

Year 2025, Volume: 27 Issue: 1, 253 - 258, 20.01.2025
https://doi.org/10.25092/baunfbed.1436370

Abstract

Fotonların madde ile etkileşimi, ortama enerji aktarımının incelenmesi açısından büyük önem taşır. Enerji aktarımı konusundaki en duyarlı çalışmalar Monte Carlo benzetişim uygulamalarıdır. Monte Carlo modellemede inkoherent saçılımın hesaplanması aşaması önem arzetmektedir. Fotonun bir ortamda inkoherent saçılma yapması, saçılma açısı ve ortama enerji aktarımı bakımından belirleyicidir. İnkoherent saçılma katsayılarının Monte Carlo modelleme programının içerisine katılmasıyla, maddede etkileşen farklı enerjili fotonların zayıflama özelliklerinin belirlenmesi mümkün olacaktır. Bu çalışmada, moleküler İnkoherent saçılma katsayılarının hesaplanması için gerekli olan inkoherent saçılma fonksiyonları, beyaz ve gri beyin maddesinin moleküler içeriğine göre atomik veriler kullanılarak elde edilmiştir. Sonuçlarımızın, deneysel çalışan ve modellemeler yapan araştırmacılar için yararlı olacağına ve kullanılabileceğine inanmaktayız.

References

  • Hubbell, J.H., Review of photon interaction cross section data in the medical and biological context, Physics in Medicine and Biology, 44, R1-R22, (1999).
  • Boone, J.M., Chavez, A.E., Comparison of x-ray cross sections for diagnostic and therapeutic medical physics, Medical Physics, 23, 1997-2005, (1996).
  • Seltzer, S.M., Calculation of photon mass energy-transfer and mass energy-absorption coefficients, Radiation Research, l36, l47-170, (1993).
  • Geraldelli, W., Tomal, A., Poletti, M.E., Characterization of tissue-equivalent materials through measurements of the linear attenuation coefficient and scattering profiles obtained with polyenergetic beams, IEEE Transactions on Nuclear Science, 60, 566-571, (2013).
  • Ghammraoui, B., Badal, A., Popescu, L.M., Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast, Physics in Medicine and Biology, 61, 3164-3179, (2016).
  • Phelps, M.E., Hoffman, E.J., Ter-Pogossian, M.M., Attenuation coefficients of various body tissues, fluids and lesions at photon energies of 18–136 keV, Radiology, 117, 573-583, (1975).
  • Bradley, D.A., Chong, C.S., Ghose, A.M., Photon absorptiometric studies of elements, mixtures and substances of biomedical interest, Physics in Medicine and Biology, 31, 267-273, (1986).
  • Hubbell, J.H., Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV, International Journal of Applied Radiation and Isotopes, 33, 1269-1290, (1982).
  • Johns, P.C., Yaffe, M.J., X-ray characterisation of normal and neoplastic breast tissues, Physics in Medicine and Biology, 32, 675-695, (1987).
  • Joyet, G., Baudraz, A., Joyet, M.L., Determination of the electronic density and the average atomic number of tissues in man by gamma ray attenuation, Experientia, 30, 1338-1341, (1974).
  • King, B.W., Landheer, K.A., Johns, P.C., X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion, Physics in Medicine and Biology, 56, 4377-4397, (2011).
  • Kosanetzky, J., Knoerr, B., Harding, G., Neitzel, U., X-ray diffraction measurements of some plastic materials and body tissues, Medical Physics, 14, 526-532, (1987).
  • McCullough, E.C., Photon attenuation in computed tomography, Medical Physics, 2, 307-320, (1975).
  • Rao, P.S., Gregg, E.C., Attenuation of monoenergetic gamma rays in tissues, American Journal of Roentgenology, 123, 631-637, (1975).
  • Tartari, A., Casnati, E., Bonifazzi, C., Baraldi, C., Molecular differential cross sections for x-ray coherent scattering in fat and polymethyl methacrylate, Physics in Medicine and Biology, 42, 2551-2560, (1997).
  • White, D.R., Peaple, L.H.J., Crosby, T.J., Measured Attenuation Coefficients at Low Photon Energies (9.88-59.32 keV) for 44 Materials and Tissues, Radiation Research, 84, 239-252, (1980).
  • Klein, O., Nishina, Y., Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Zeitschrift für Physik, 52, 853-868, (1929).
  • Harding, G., Kosanetzky, J., Neitzel, U., X-ray diffraction computed tomography, Medical Physics, 14, 515-525, (1987).
  • Johns, P.C., Wismayer, M.P., Measurement of coherent x-ray scatter form factors for amorphous materials using diffractometers, Physics in Medicine and Biology, 49, 5233-5250, (2004).
  • Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T., Howerton, R.J., Atomic form factors, incoherent scattering functions, and photon scattering cross sections, Journal of Physical and Chemical Reference Data, 4, 471-538, (1975).
  • ICRP (International Commission on Radiological Protection) Report of the Task Group on Reference Man ICRP Report 23, Oxford: Pergamon, (1975).
  • Cho, Z.H., Tsai, C.M., Wilson, G., Study of Contrast and Modulation Mechanisms in X-ray/Photon Tranverse Axial Transmission Tomography, Physics in Medicine and Biology, 20, 879-889, (1975).
  • Drukier, A.K., Contrast in Computerized Transverse Axial Tomography of Brain, Physics in Medicine and Biology, 22, 912-918, (1977).
  • Woodard, H.Q., White, D.R., The composition of body tissues, The British journal of radiology, 59, 1209-1218, (1986).
  • Kim, Y.S., Human Tissues: Chemical Composition and Photon Dosimetry Data, Radiation Research, 57, 38-45, (1974).
  • Kim, Y.S., Human Tissues: Chemical Composition and Photon Dosimetry Data, A Correction, Radiation Research, 60, 361-362, (1974).
  • Padikal, T.N., Fivozinsky, S.P., Medical Physics Data Book, NBS Handbook 138, NBS, Washington, DC, (1982).
  • Yang, N.C., Leichner, P.K., Hawkins, G., Effective atomic numbers for low‐energy total photon interactions in human tissues, Medical Physics, 14, 759-766, (1987).
  • ICRU Tissue substitutes in Radiation Dosimetry and Measurement, ICRU Report 44, Bethesda, MD:ICRU, (1989).
  • White, D.R., Widdowson, E.M., Woodard, H.Q., Dickerson, W.T., The composition of body tissues, The British journal of radiology, 64, 149-151, (1991).

Molecular scattering function data of brain tissue

Year 2025, Volume: 27 Issue: 1, 253 - 258, 20.01.2025
https://doi.org/10.25092/baunfbed.1436370

Abstract

The interaction of photons with matter is of great importance for the study of energy transfer to the medium. The most sensitive studies on energy transfer are Monte Carlo simulation applications. In Monte Carlo modeling, the calculation of incoherent scattering is important. The incoherent scattering of a photon in a medium is decisive in terms of scattering angle and energy transfer to the medium. By incorporating the incoherent scattering coefficients into the Monte Carlo modeling program, it will be possible to determine the attenuation properties of photons of different energies interacting in the matter. In this study, incoherent scattering functions necessary for calculating molecular incoherent scattering coefficients were obtained by using atomic data according to the molecular content of white and gray brain matter. We believe that our results can be used and will be beneficial for researchers who make models and work experimentally.

References

  • Hubbell, J.H., Review of photon interaction cross section data in the medical and biological context, Physics in Medicine and Biology, 44, R1-R22, (1999).
  • Boone, J.M., Chavez, A.E., Comparison of x-ray cross sections for diagnostic and therapeutic medical physics, Medical Physics, 23, 1997-2005, (1996).
  • Seltzer, S.M., Calculation of photon mass energy-transfer and mass energy-absorption coefficients, Radiation Research, l36, l47-170, (1993).
  • Geraldelli, W., Tomal, A., Poletti, M.E., Characterization of tissue-equivalent materials through measurements of the linear attenuation coefficient and scattering profiles obtained with polyenergetic beams, IEEE Transactions on Nuclear Science, 60, 566-571, (2013).
  • Ghammraoui, B., Badal, A., Popescu, L.M., Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast, Physics in Medicine and Biology, 61, 3164-3179, (2016).
  • Phelps, M.E., Hoffman, E.J., Ter-Pogossian, M.M., Attenuation coefficients of various body tissues, fluids and lesions at photon energies of 18–136 keV, Radiology, 117, 573-583, (1975).
  • Bradley, D.A., Chong, C.S., Ghose, A.M., Photon absorptiometric studies of elements, mixtures and substances of biomedical interest, Physics in Medicine and Biology, 31, 267-273, (1986).
  • Hubbell, J.H., Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV, International Journal of Applied Radiation and Isotopes, 33, 1269-1290, (1982).
  • Johns, P.C., Yaffe, M.J., X-ray characterisation of normal and neoplastic breast tissues, Physics in Medicine and Biology, 32, 675-695, (1987).
  • Joyet, G., Baudraz, A., Joyet, M.L., Determination of the electronic density and the average atomic number of tissues in man by gamma ray attenuation, Experientia, 30, 1338-1341, (1974).
  • King, B.W., Landheer, K.A., Johns, P.C., X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion, Physics in Medicine and Biology, 56, 4377-4397, (2011).
  • Kosanetzky, J., Knoerr, B., Harding, G., Neitzel, U., X-ray diffraction measurements of some plastic materials and body tissues, Medical Physics, 14, 526-532, (1987).
  • McCullough, E.C., Photon attenuation in computed tomography, Medical Physics, 2, 307-320, (1975).
  • Rao, P.S., Gregg, E.C., Attenuation of monoenergetic gamma rays in tissues, American Journal of Roentgenology, 123, 631-637, (1975).
  • Tartari, A., Casnati, E., Bonifazzi, C., Baraldi, C., Molecular differential cross sections for x-ray coherent scattering in fat and polymethyl methacrylate, Physics in Medicine and Biology, 42, 2551-2560, (1997).
  • White, D.R., Peaple, L.H.J., Crosby, T.J., Measured Attenuation Coefficients at Low Photon Energies (9.88-59.32 keV) for 44 Materials and Tissues, Radiation Research, 84, 239-252, (1980).
  • Klein, O., Nishina, Y., Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Zeitschrift für Physik, 52, 853-868, (1929).
  • Harding, G., Kosanetzky, J., Neitzel, U., X-ray diffraction computed tomography, Medical Physics, 14, 515-525, (1987).
  • Johns, P.C., Wismayer, M.P., Measurement of coherent x-ray scatter form factors for amorphous materials using diffractometers, Physics in Medicine and Biology, 49, 5233-5250, (2004).
  • Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T., Howerton, R.J., Atomic form factors, incoherent scattering functions, and photon scattering cross sections, Journal of Physical and Chemical Reference Data, 4, 471-538, (1975).
  • ICRP (International Commission on Radiological Protection) Report of the Task Group on Reference Man ICRP Report 23, Oxford: Pergamon, (1975).
  • Cho, Z.H., Tsai, C.M., Wilson, G., Study of Contrast and Modulation Mechanisms in X-ray/Photon Tranverse Axial Transmission Tomography, Physics in Medicine and Biology, 20, 879-889, (1975).
  • Drukier, A.K., Contrast in Computerized Transverse Axial Tomography of Brain, Physics in Medicine and Biology, 22, 912-918, (1977).
  • Woodard, H.Q., White, D.R., The composition of body tissues, The British journal of radiology, 59, 1209-1218, (1986).
  • Kim, Y.S., Human Tissues: Chemical Composition and Photon Dosimetry Data, Radiation Research, 57, 38-45, (1974).
  • Kim, Y.S., Human Tissues: Chemical Composition and Photon Dosimetry Data, A Correction, Radiation Research, 60, 361-362, (1974).
  • Padikal, T.N., Fivozinsky, S.P., Medical Physics Data Book, NBS Handbook 138, NBS, Washington, DC, (1982).
  • Yang, N.C., Leichner, P.K., Hawkins, G., Effective atomic numbers for low‐energy total photon interactions in human tissues, Medical Physics, 14, 759-766, (1987).
  • ICRU Tissue substitutes in Radiation Dosimetry and Measurement, ICRU Report 44, Bethesda, MD:ICRU, (1989).
  • White, D.R., Widdowson, E.M., Woodard, H.Q., Dickerson, W.T., The composition of body tissues, The British journal of radiology, 64, 149-151, (1991).
There are 30 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Research Articles
Authors

Aysun Böke 0000-0002-0108-6825

Early Pub Date January 16, 2025
Publication Date January 20, 2025
Submission Date February 13, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2025 Volume: 27 Issue: 1

Cite

APA Böke, A. (2025). Molecular scattering function data of brain tissue. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 253-258. https://doi.org/10.25092/baunfbed.1436370
AMA Böke A. Molecular scattering function data of brain tissue. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. January 2025;27(1):253-258. doi:10.25092/baunfbed.1436370
Chicago Böke, Aysun. “Molecular Scattering Function Data of Brain Tissue”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 1 (January 2025): 253-58. https://doi.org/10.25092/baunfbed.1436370.
EndNote Böke A (January 1, 2025) Molecular scattering function data of brain tissue. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 1 253–258.
IEEE A. Böke, “Molecular scattering function data of brain tissue”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 1, pp. 253–258, 2025, doi: 10.25092/baunfbed.1436370.
ISNAD Böke, Aysun. “Molecular Scattering Function Data of Brain Tissue”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/1 (January2025), 253-258. https://doi.org/10.25092/baunfbed.1436370.
JAMA Böke A. Molecular scattering function data of brain tissue. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;27:253–258.
MLA Böke, Aysun. “Molecular Scattering Function Data of Brain Tissue”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 1, 2025, pp. 253-8, doi:10.25092/baunfbed.1436370.
Vancouver Böke A. Molecular scattering function data of brain tissue. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;27(1):253-8.