Research Article
BibTex RIS Cite

Design of a Toolbox for Kinematic Analysis of Jansen's Linkage

Year 2022, , 112 - 119, 10.10.2022
https://doi.org/10.53070/bbd.1173829

Abstract

Utilizing industrial robots is an efficient method for addressing the labor crisis and advancing industrial technologies. As a result, industrial robots are becoming increasingly popular. Additionally, the widespread use of industrial robots will increase the interest in robot propulsion mechanisms. Legged robots should be primarily investigated because of their potential advantages. Among leg mechanisms, Jansen's linkage (JL) has gained popularity due to its organic walking motion, scalable design, and simple drive by rotary input. However, the highly nonlinear nature of JL makes its analysis challenging. The research provides a user-friendly toolbox design that visualizes the toe trajectory and simultaneously calculates the step height by performing a kinematic analysis of the JL using the user-supplied link lengths. In this way, the study contributes significantly to the design phase of legged robots and reduces the amount of time required.

References

  • Alaci, S., Ciornei, F.-C., Siretean, S.-T., & Ciornei, M.-C. (2018). Graphical-analytical analysis of the mechanism with rotating cam and flat-face follower. MATEC Web of Conferences, 184, 1010.
  • Arrouk, K. A., Bouzgarrou, B. C., & Gogu, G. (2018). Workspace characterization and kinematic analysis of general spherical parallel manipulators revisited via graphical based approaches. Mechanism and Machine Theory, 122, 404–431.
  • Gaikwad, J. L., Dasgupta, B., & Joshi, U. (2004). Static equilibrium analysis of compliant mechanical systems using relative coordinates and loop closure equations. Mechanism and Machine Theory, 39(5), 501–517.
  • Guo, S., Wang, G., Qi, Z., Zhuo, Y., & Wu, Z. (2020). A quasi-static model for kinematic analysis of a feed driving mechanism. Mechanism and Machine Theory, 148, 103780.
  • Jansen, T. (2007). The Great Pretender. 010 Uitgeverij. Rotterdam, Holland.
  • Jiang, J., Wu, D., He, T., Zhang, Y., Li, C., & Sun, H. (2022). Kinematic analysis and energy saving optimization design of parallel lifting mechanism for stereoscopic parking robot. Energy Reports, 8, 2163–2178.
  • Klann, J. C. (2001). Patent No. 6.260. 862. USA.
  • Liang, C., Ceccarelli, M., & Takeda, Y. (2012). Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot. Frontiers of Mechanical Engineering, 7(4), 357–370.
  • Lokhande, N. G., & Emche, V. B. (2013). Mechanical spider by using Klann mechanism. International Journal of Mechanical Engineering and Computer Applications, 1(5), 13–16.
  • Mehdigholi, H., & Akbarnejad, S. (2012). Optimization of watt’s six-bar linkage to generate straight and parallel leg motion. International Journal of Advanced Robotic Systems, 9(1), 22.
  • Meng, Q., Liu, X.-J., & Xie, F. (2022). Structure design and kinematic analysis of a class of ring truss deployable mechanisms for satellite antennas based on novel basic units. Mechanism and Machine Theory, 174, 104881.
  • Moldovan, F., & Dolga, V. (2010). Analysis of Jansen walking mechanism using CAD. Solid State Phenomena, 166, 297–302.
  • Nansai, S., Elara, M. R., & Iwase, M. (2013). Dynamic analysis and modeling of Jansen mechanism. Procedia Engineering, 64, 1562–1571.
  • Parekh, B. J., Thakkar, P. N., & Tambe, M. N. (2014). Design and analysis of theo Jansen’s mechanism based sports ground (pitch) marking robot. 2014 Annual IEEE India Conference (INDICON), 1–5.
  • Patle, M. R., Mehekare, M. S., Bisen, R. Y., & Shette, U. N. (2017). Analysis of stride length and step height of Theo Jansen leg motion. International Journal of Innovative Research in Science, Engineering and Technology, 4184–4189.
  • Regulan, G. K., Kaliappan, G., & Santhakumar, M. (2016). Development of an Amphibian Legged Robot Based on Jansen Mechanism for Exploration Tasks. International Conference on Advancements in Automation, Robotics & Sensing, 74–91.
  • Rygg, L. A. (1893). Mechanical Horse, United States Patent 491927. February.
  • Song, S.-M., & Waldron, K. J. (1989). Machines that walk: the adaptive suspension vehicle. MIT press.
  • Zhang, J., Liu, C., Liu, T., Qi, K., Niu, J., & Guo, S. (2021). Module combination based configuration synthesis and kinematic analysis of generalized spherical parallel mechanism for ankle rehabilitation. Mechanism and Machine Theory, 166, 104436.

Jansen Bağlantısının Kinematik Analizi için Araç Kutusu Tasarımı

Year 2022, , 112 - 119, 10.10.2022
https://doi.org/10.53070/bbd.1173829

Abstract

Endüstriyel robotları kullanmak, işgücü krizini ele almak ve endüstriyel teknolojileri ilerletmek için etkili bir yöntemdir. Sonuç olarak, endüstriyel robotlar giderek daha popüler hale geliyor. Ayrıca endüstriyel robotların yaygınlaşması robot tahrik mekanizmalarına olan ilgiyi artıracaktır. Bacaklı robotlar, potansiyel avantajları nedeniyle öncelikle araştırılmalıdır. Bacak mekanizmaları arasında, Jansen'in bağlantısı (JL), organik yürüme hareketi, ölçeklenebilir tasarımı ve döner girdi ile basit sürüşü nedeniyle popülerlik kazanmıştır. Bununla birlikte, JL'nin oldukça doğrusal olmayan doğası, analizini zorlaştırmaktadır. Araştırma, ayak yörüngesini görselleştiren ve kullanıcı tarafından sağlanan bağlantı uzunluklarını kullanarak JL'nin kinematik analizini gerçekleştirerek adım yüksekliğini aynı anda hesaplayan kullanıcı dostu bir araç kutusu tasarımı sağlar. Bu sayede çalışma, bacaklı robotların tasarım aşamasına önemli ölçüde katkı sağlamakta ve gereken süreyi azaltmaktadır.

References

  • Alaci, S., Ciornei, F.-C., Siretean, S.-T., & Ciornei, M.-C. (2018). Graphical-analytical analysis of the mechanism with rotating cam and flat-face follower. MATEC Web of Conferences, 184, 1010.
  • Arrouk, K. A., Bouzgarrou, B. C., & Gogu, G. (2018). Workspace characterization and kinematic analysis of general spherical parallel manipulators revisited via graphical based approaches. Mechanism and Machine Theory, 122, 404–431.
  • Gaikwad, J. L., Dasgupta, B., & Joshi, U. (2004). Static equilibrium analysis of compliant mechanical systems using relative coordinates and loop closure equations. Mechanism and Machine Theory, 39(5), 501–517.
  • Guo, S., Wang, G., Qi, Z., Zhuo, Y., & Wu, Z. (2020). A quasi-static model for kinematic analysis of a feed driving mechanism. Mechanism and Machine Theory, 148, 103780.
  • Jansen, T. (2007). The Great Pretender. 010 Uitgeverij. Rotterdam, Holland.
  • Jiang, J., Wu, D., He, T., Zhang, Y., Li, C., & Sun, H. (2022). Kinematic analysis and energy saving optimization design of parallel lifting mechanism for stereoscopic parking robot. Energy Reports, 8, 2163–2178.
  • Klann, J. C. (2001). Patent No. 6.260. 862. USA.
  • Liang, C., Ceccarelli, M., & Takeda, Y. (2012). Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot. Frontiers of Mechanical Engineering, 7(4), 357–370.
  • Lokhande, N. G., & Emche, V. B. (2013). Mechanical spider by using Klann mechanism. International Journal of Mechanical Engineering and Computer Applications, 1(5), 13–16.
  • Mehdigholi, H., & Akbarnejad, S. (2012). Optimization of watt’s six-bar linkage to generate straight and parallel leg motion. International Journal of Advanced Robotic Systems, 9(1), 22.
  • Meng, Q., Liu, X.-J., & Xie, F. (2022). Structure design and kinematic analysis of a class of ring truss deployable mechanisms for satellite antennas based on novel basic units. Mechanism and Machine Theory, 174, 104881.
  • Moldovan, F., & Dolga, V. (2010). Analysis of Jansen walking mechanism using CAD. Solid State Phenomena, 166, 297–302.
  • Nansai, S., Elara, M. R., & Iwase, M. (2013). Dynamic analysis and modeling of Jansen mechanism. Procedia Engineering, 64, 1562–1571.
  • Parekh, B. J., Thakkar, P. N., & Tambe, M. N. (2014). Design and analysis of theo Jansen’s mechanism based sports ground (pitch) marking robot. 2014 Annual IEEE India Conference (INDICON), 1–5.
  • Patle, M. R., Mehekare, M. S., Bisen, R. Y., & Shette, U. N. (2017). Analysis of stride length and step height of Theo Jansen leg motion. International Journal of Innovative Research in Science, Engineering and Technology, 4184–4189.
  • Regulan, G. K., Kaliappan, G., & Santhakumar, M. (2016). Development of an Amphibian Legged Robot Based on Jansen Mechanism for Exploration Tasks. International Conference on Advancements in Automation, Robotics & Sensing, 74–91.
  • Rygg, L. A. (1893). Mechanical Horse, United States Patent 491927. February.
  • Song, S.-M., & Waldron, K. J. (1989). Machines that walk: the adaptive suspension vehicle. MIT press.
  • Zhang, J., Liu, C., Liu, T., Qi, K., Niu, J., & Guo, S. (2021). Module combination based configuration synthesis and kinematic analysis of generalized spherical parallel mechanism for ankle rehabilitation. Mechanism and Machine Theory, 166, 104436.
There are 19 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other), Control Engineering, Mechatronics and Robotics
Journal Section PAPERS
Authors

Semir Sünkün 0000-0001-6073-1460

Berke Oğulcan Parlak 0000-0003-0122-8202

Alper Yıldırım 0000-0003-4814-5033

Hüseyin Ayhan Yavaşoğlu 0000-0001-8145-719X

Publication Date October 10, 2022
Submission Date September 11, 2022
Acceptance Date September 16, 2022
Published in Issue Year 2022

Cite

APA Sünkün, S., Parlak, B. O., Yıldırım, A., Yavaşoğlu, H. A. (2022). Design of a Toolbox for Kinematic Analysis of Jansen’s Linkage. Computer Science, IDAP-2022 : International Artificial Intelligence and Data Processing Symposium, 112-119. https://doi.org/10.53070/bbd.1173829

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.