Research Article
BibTex RIS Cite

Adaptation to Online Education: An Educational Data Mining Application

Year 2022, , 95 - 102, 07.12.2022
https://doi.org/10.53070/bbd.1199055

Abstract

Despite space, time, and financial limitations, people who want to receive education participate intensively in online education programs that have emerged with the development of technology. With the Covid-19 outbreak, this interest has increased exponentially. In today's societies, where online education, which is preferred for different reasons, has become essential, examining the factors affecting success in online learning is a very important research topic. The study examined the level of adaptation to online education in terms of demographic variables. Experimental studies and necessary analyzes were carried out on the open-access ‘Students Adaptability Level in Online Education’ dataset. The results obtained using association rules, among the most widely used data mining techniques, have provided remarkable results regarding factors affecting success in distance education. It is thought that the study and the reported results will be a guide in creating education plans suitable for the demographic characteristics of the students enrolled in the online education program.

References

  • N. H. SÖYLEMEZ, “BİLGİSAYAR DESTEKLİ VE BİLGİSAYAR TEMELLİ ÖĞRETİM YÖNTEMLERİNİN AKADEMİK BAŞARI VE KALICILIĞA ETKİSİ,” Elektron. Eğitim Bilim. Derg., vol. 2, no. 3, Mar. 2013, Accessed: Oct. 17, 2022. [Online]. Available: https://dergipark.org.tr/tr/pub/ejedus/issue/15937/167581
  • M. Aksarayli, D. İibf, and İ. / Türkiye, “Uzaktan Eğitimi Tercih Etme Nedenleri ve Başarı Arasındaki İlişkinin Kümeleme Analizi İle İncelenmesi,” West. Anatolia J. Educ. Sci., vol. 8, no. 2, pp. 37–48, Dec. 2017, Accessed: Oct. 14, 2022. [Online]. Available: https://dergipark.org.tr/en/pub/baebd/issue/33149/350179
  • S. G. TELLİ and D. ALTUN, “Coronavirüs ve Çevrimiçi (Online) Eğitimin Önlenemeyen Yükselişi,” Üniversite Araştırmaları Derg., vol. 3, no. 1, pp. 25–34, Apr. 2020, doi: 10.32329/uad.711110.
  • R. S. Baker, “Educational data mining: An advance for intelligent systems in education,” IEEE Intell. Syst., vol. 29, no. 3, pp. 78–82, 2014, doi: 10.1109/MIS.2014.42.
  • C. Hark, “Öğrencilerin Akıllı Tahtaya İlişkin Tutumlarının İncelenmesine Yönelik Bir Veri Madenciliği Uygulaması. Fırat Üniversitesi Eğitim Bilimleri Enstitüsü, Yüksek Lisans Tezi,” Fırat Üniversitesi, 2013.
  • T. UÇKAN, C. HARK, and A. KARCI, “Fp Growth Algoritması Ve Big Data Uygulamaları,” in IDAP 2016 - International Artificial Intelligence and Data Processing Symposium, 2016, pp. 338–341.
  • G. ÇETİNTAV, B. D. ÇİL, and R. YILMAZ, “EĞİTSEL VERİ MADENCİLİĞİ VE ÖĞRENME ANALİTİKLERİ ARAŞTIRMALARINDA VERİ GİZLİLİĞİ VE ETİK MESELELER: ARAŞTIRMALAR ÜZERİNE BİR İNCELEME,” Eğitim Teknol. Kuram ve Uygul., vol. 12, no. 1, pp. 113–146, Jan. 2022, doi: 10.17943/ETKU.950392.
  • Maciej Serda et al., “Çevrimiçi Öğrenme Ortamındaki Etkileşim Verilerine Göre Öğrencilerin Akademik Performanslarının Veri Madenciliği Yaklaşımı İle Modellenmesi,” Uniw. śląski, vol. 7, no. 1, pp. 343–354, 2014, doi: 10.2/JQUERY.MIN.JS.
  • C. HARK, T. UÇKAN, and A. KARCI, “15 Temmuz Şehitler Köprüsü Kapsamında Hava Yol Durum Bilgileri Kullanılarak Trafik Kazalarının Nedenlerine Yönelik Birliktelik Çıkarımı,” in IDAP 2016 - International Artificial Intelligence and Data Processing Symposium, 2016, pp. 347–351.
  • C. W. Liao and Y. H. Perng, “Data mining for occupational injuries in the Taiwan construction industry,” Saf. Sci., vol. 46, no. 7, pp. 1091–1102, Aug. 2008, doi: 10.1016/J.SSCI.2007.04.007.
  • G. Mühendislik et al., “TRAFİK KAZALARININ BİRLİKTELİK KURALLARI İLE ANALİZİ,” Gazi J. Eng. Sci., vol. 1, no. 2, pp. 265–283, Jun. 2015, Accessed: Oct. 20, 2022. [Online]. Available: https://dergipark.org.tr/en/pub/gmbd/issue/29232/312922
  • M. Aydoğan and A. KARCI, “Meslek Yüksekokulu Öğrencilerinin Başarı Performanslarının Makine Öğrenmesi Yöntemleri ile Analizi,” in 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, 2018, pp. 1–5.
  • M. Aydogan and A. Karci, “Turkish Text Classification with Machine Learning and Transfer Learning,” 2019 Int. Conf. Artif. Intell. Data Process. Symp. IDAP 2019, Sep. 2019, doi: 10.1109/IDAP.2019.8875919.
  • A. MAKALESİ Ayfer ALPER and A. Üniversitesi Eğitim Bilimleri Fakültesi Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, “PANDEMİ SÜRECİNDE K-12 DÜZEYİNDE UZAKTAN EĞİTİM: DURUM ÇALIŞMASI,” Milli Eğitim Derg., vol. 49, no. 1, pp. 45–67, Dec. 2020, doi: 10.37669/MILLIEGITIM.787735.
  • İ. Söylemez et al., “Association Rules on Traffic Accident: Case Of Ankara,” Ege Acad. Rev., vol. 16, no. 5, pp. 11–20, Nov. 2016, doi: 10.7240/MUFBED.56489.
  • V. Madenciliğinde, B. Kuralları, İ. El, O. Piyasası, and Ü. Bir Uygulama, “Veri Madenciliğinde Birliktelik Kuralları ve İkinci El Otomobil Piyasası Üzerine Bir Uygulama,” Ordu Üniversitesi Sos. Bilim. Enstitüsü Sos. Bilim. Araştırmaları Derg., vol. 7, no. 1, pp. 45–58, Mar. 2017, Accessed: Oct. 20, 2022. [Online]. Available: https://dergipark.org.tr/tr/pub/odusobiad/issue/28361/301580
  • R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,” in VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, 1994, pp. 487–499. [Online]. Available: http://www.vldb.org/conf/1994/P487.PDF
  • M. M. H. Suzan, N. A. Samrin, A. A. Biswas, and M. A. Pramanik, “Students’ Adaptability Level Prediction in Online Education using Machine Learning Approaches,” 2021 12th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2021, 2021, doi: 10.1109/ICCCNT51525.2021.9579741.

Adaptation to Online Education: An Educational Data Mining Application

Year 2022, , 95 - 102, 07.12.2022
https://doi.org/10.53070/bbd.1199055

Abstract

Despite space, time, and financial limitations, people who want to receive education participate intensively in online education programs that have emerged with the development of technology. With the Covid-19 outbreak, this interest has increased exponentially. In today's societies, where online education, which is preferred for different reasons, has become essential, examining the factors affecting success in online learning is a very important research topic. The study examined the level of adaptation to online education in terms of demographic variables. Experimental studies and necessary analyzes were carried out on the open-access ‘Students Adaptability Level in Online Education’ dataset. The results obtained using association rules, among the most widely used data mining techniques, have provided remarkable results regarding factors affecting success in distance education. It is thought that the study and the reported results will be a guide in creating education plans suitable for the demographic characteristics of the students enrolled in the online education program.

References

  • N. H. SÖYLEMEZ, “BİLGİSAYAR DESTEKLİ VE BİLGİSAYAR TEMELLİ ÖĞRETİM YÖNTEMLERİNİN AKADEMİK BAŞARI VE KALICILIĞA ETKİSİ,” Elektron. Eğitim Bilim. Derg., vol. 2, no. 3, Mar. 2013, Accessed: Oct. 17, 2022. [Online]. Available: https://dergipark.org.tr/tr/pub/ejedus/issue/15937/167581
  • M. Aksarayli, D. İibf, and İ. / Türkiye, “Uzaktan Eğitimi Tercih Etme Nedenleri ve Başarı Arasındaki İlişkinin Kümeleme Analizi İle İncelenmesi,” West. Anatolia J. Educ. Sci., vol. 8, no. 2, pp. 37–48, Dec. 2017, Accessed: Oct. 14, 2022. [Online]. Available: https://dergipark.org.tr/en/pub/baebd/issue/33149/350179
  • S. G. TELLİ and D. ALTUN, “Coronavirüs ve Çevrimiçi (Online) Eğitimin Önlenemeyen Yükselişi,” Üniversite Araştırmaları Derg., vol. 3, no. 1, pp. 25–34, Apr. 2020, doi: 10.32329/uad.711110.
  • R. S. Baker, “Educational data mining: An advance for intelligent systems in education,” IEEE Intell. Syst., vol. 29, no. 3, pp. 78–82, 2014, doi: 10.1109/MIS.2014.42.
  • C. Hark, “Öğrencilerin Akıllı Tahtaya İlişkin Tutumlarının İncelenmesine Yönelik Bir Veri Madenciliği Uygulaması. Fırat Üniversitesi Eğitim Bilimleri Enstitüsü, Yüksek Lisans Tezi,” Fırat Üniversitesi, 2013.
  • T. UÇKAN, C. HARK, and A. KARCI, “Fp Growth Algoritması Ve Big Data Uygulamaları,” in IDAP 2016 - International Artificial Intelligence and Data Processing Symposium, 2016, pp. 338–341.
  • G. ÇETİNTAV, B. D. ÇİL, and R. YILMAZ, “EĞİTSEL VERİ MADENCİLİĞİ VE ÖĞRENME ANALİTİKLERİ ARAŞTIRMALARINDA VERİ GİZLİLİĞİ VE ETİK MESELELER: ARAŞTIRMALAR ÜZERİNE BİR İNCELEME,” Eğitim Teknol. Kuram ve Uygul., vol. 12, no. 1, pp. 113–146, Jan. 2022, doi: 10.17943/ETKU.950392.
  • Maciej Serda et al., “Çevrimiçi Öğrenme Ortamındaki Etkileşim Verilerine Göre Öğrencilerin Akademik Performanslarının Veri Madenciliği Yaklaşımı İle Modellenmesi,” Uniw. śląski, vol. 7, no. 1, pp. 343–354, 2014, doi: 10.2/JQUERY.MIN.JS.
  • C. HARK, T. UÇKAN, and A. KARCI, “15 Temmuz Şehitler Köprüsü Kapsamında Hava Yol Durum Bilgileri Kullanılarak Trafik Kazalarının Nedenlerine Yönelik Birliktelik Çıkarımı,” in IDAP 2016 - International Artificial Intelligence and Data Processing Symposium, 2016, pp. 347–351.
  • C. W. Liao and Y. H. Perng, “Data mining for occupational injuries in the Taiwan construction industry,” Saf. Sci., vol. 46, no. 7, pp. 1091–1102, Aug. 2008, doi: 10.1016/J.SSCI.2007.04.007.
  • G. Mühendislik et al., “TRAFİK KAZALARININ BİRLİKTELİK KURALLARI İLE ANALİZİ,” Gazi J. Eng. Sci., vol. 1, no. 2, pp. 265–283, Jun. 2015, Accessed: Oct. 20, 2022. [Online]. Available: https://dergipark.org.tr/en/pub/gmbd/issue/29232/312922
  • M. Aydoğan and A. KARCI, “Meslek Yüksekokulu Öğrencilerinin Başarı Performanslarının Makine Öğrenmesi Yöntemleri ile Analizi,” in 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, 2018, pp. 1–5.
  • M. Aydogan and A. Karci, “Turkish Text Classification with Machine Learning and Transfer Learning,” 2019 Int. Conf. Artif. Intell. Data Process. Symp. IDAP 2019, Sep. 2019, doi: 10.1109/IDAP.2019.8875919.
  • A. MAKALESİ Ayfer ALPER and A. Üniversitesi Eğitim Bilimleri Fakültesi Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, “PANDEMİ SÜRECİNDE K-12 DÜZEYİNDE UZAKTAN EĞİTİM: DURUM ÇALIŞMASI,” Milli Eğitim Derg., vol. 49, no. 1, pp. 45–67, Dec. 2020, doi: 10.37669/MILLIEGITIM.787735.
  • İ. Söylemez et al., “Association Rules on Traffic Accident: Case Of Ankara,” Ege Acad. Rev., vol. 16, no. 5, pp. 11–20, Nov. 2016, doi: 10.7240/MUFBED.56489.
  • V. Madenciliğinde, B. Kuralları, İ. El, O. Piyasası, and Ü. Bir Uygulama, “Veri Madenciliğinde Birliktelik Kuralları ve İkinci El Otomobil Piyasası Üzerine Bir Uygulama,” Ordu Üniversitesi Sos. Bilim. Enstitüsü Sos. Bilim. Araştırmaları Derg., vol. 7, no. 1, pp. 45–58, Mar. 2017, Accessed: Oct. 20, 2022. [Online]. Available: https://dergipark.org.tr/tr/pub/odusobiad/issue/28361/301580
  • R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,” in VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, 1994, pp. 487–499. [Online]. Available: http://www.vldb.org/conf/1994/P487.PDF
  • M. M. H. Suzan, N. A. Samrin, A. A. Biswas, and M. A. Pramanik, “Students’ Adaptability Level Prediction in Online Education using Machine Learning Approaches,” 2021 12th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2021, 2021, doi: 10.1109/ICCCNT51525.2021.9579741.
There are 18 citations in total.

Details

Primary Language English
Subjects Computer Software, Software Engineering (Other)
Journal Section PAPERS
Authors

Cengiz Hark 0000-0001-5975-5529

Hatice Okumuş 0000-0002-9784-4300

Taner Uçkan 0000-0001-5385-6775

Publication Date December 7, 2022
Submission Date November 3, 2022
Acceptance Date November 30, 2022
Published in Issue Year 2022

Cite

APA Hark, C., Okumuş, H., & Uçkan, T. (2022). Adaptation to Online Education: An Educational Data Mining Application. Computer Science, Vol:7(Issue:2), 95-102. https://doi.org/10.53070/bbd.1199055

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.