ve-degree, ev-degree and First Zagreb Index Entropies of Graphs
Year 2021,
Volume: 6 Issue: 2, 90 - 101, 01.06.2021
Bünyamin Şahin
,
Abdulgani Şahin
Abstract
Chellali et al. introduced two degree concepts, ve-degree and ev-degree (Chellali et al, 2017). The ve-degree of a vertex v equals to number of different edges which are incident to a vertex from the closed neighborhod of v. Moreover the ev-degree of an edge e=ab equals to the number of vertices of the union of the closed neighborhoods of a and b. The most private feature of these degree concepts is, total number of ve-degrees and total number of ev-degrees equal to first Zagreb index of the graphs for triangle-free graphs. In this paper we introduce ve-degree entropy, ev-degree entropy and investigate the relations between these entropies and the first Zagreb index entropy. Finally we obtain the maximal trees with respect to ve-degree irregularity index.
References
- [1] V. Kraus, M. Dehmer, F. Emmert-Streib, Probabilistic inequalities for evaluating structural
network measures, Inform. Sci. 288 (2014), 220–245.
- [2] M. Dehmer, F. Emmert-Streib, M. Grabner, A computational approach to construct a
multivariate complete graph invariant, Inform. Sci. 260 (2014), 200–208.
- [3] A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited, Entropy 14
(3) (2012), 559–570.
- [4] M. Dehmer, A. Mowshowitz, A case study of cracks in the scientific enterprise: reinvention
of information-theoretic measures for graphs, Complexity (2014).
- [5] Y. Chen, K. Wu, X. Chen, C. Tang, Q. Zhu, An entropy-based uncertainty measurement
approach in neighborhood systems, Inform. Sci. 279 (2014), 239–250.
- [6] C. Wang, A. Qu, Entropy, similarity measure and distance measure of vague soft sets and
their relations, Inform. Sci. 244 (2013) 92–106.
- [7] M. Dehmer, A. Mowshowitz, A history ofgraph entropy measures, Inform. Sci. 181 (2011),
57–78.
- [8] M. Dehmer, Information processing in complex networks: graph entropy and information
functionals, Appl. Math. Comput. 201 (2008), 82–94.
- [9] M. Dehmer, A. Mowshowitz, Y. Shi, Structural differentiation of graphs using Hosoya-
based indices, PLoS ONE 9 (7) (2014) e102459.
- [10] S. Dragomir, C. Goh, Some bounds on entropy measures in information theory, Appl.
Math. Lett. 10 (1997) 23–28.
- [11] Z. Chen, M. Dehmer, Y. Shi, A note on distance-based graph entropies, Entropy 16 (10)
(2014), 5416–5427.
- [12] J. Cao, M. Shi, L. Feng, On the edge-hyper-hamiltonian laceability of balanced
hypercubes, Discuss Math. Graph Theory. 36 (2016), 805–817.
- [13] L. Feng, J. Cao, W. Liu, S. Ding, H. Liu, The spectral radius of edge chromatic critical
graphs, Linear Algebra Appl. 492 (2016) 78–88.
- [14] G. Yu, X. Liu, H. Qu, Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs,
Appl. Math. Comput. 293 (2017) 287–292.
- [15] S. Cao, M. Dehmer, Y. Shi, Extremality of degree based graph entropies, Information
Sciences 278 (2014), 22-33.
- [16] S. Cao, M. Dehmer, Degree based entropies of networks revisited, Appl. Math. Comput.
261 (2015) 141-147.
- [17] K. C. Das, M. Dehmer, A conjecture regarding the extremal values of graph entropy
based on degree powers, Entropy18 (2016) #183.
- [18] K. C. Das, Y. Shi, Some properties on entropies of graphs, MATCH Commun. Math.
Comput. Chem. 78 (2017), 259-272.
- [19] S. Cao, M. Dehmer, Z. Kang, Network entropies based on independent sets and matchings,
Appl. Math. Comput. 307 (2017) 265–270.
- [20] P. Wan, X. Chen, J. Tu, M. Dehmer, S. Zhang, F. Emmert-Streib, On graph entropy
measures based on the number of independent sets and matchings Inform. Sci. 516 (2020),
491-504.
- [21] I. Gutman, B. Furtula, V. Katanic, Randic index and information AKCE International
Journal of Graphs and Combinatorics 15 (2018), 307–312.
- [22] M. Eliasi, On extrenal properties of general graph entropies, MATCH Commun. Math.
Comput. Chem. 79 (2018), 645–657.
- [23] M. Ghorbani, M. Dehmer, S. Zangi, On certain aspects of graph entropies of fullerenes,
MATCH Commun. Math. Comput. Chem. 81 (2019), 163–174.
- [24] R. Kazemi, Entropy of weighted graphs with the degree-based topological indices as
weights, , MATCH Commun. Math. Comput. Chem. 76 (2016), 69–80.
- [25] M. Dehmer, Z. Chen, X. Li, Y. Shi, F. Emmert-Streib, Mathematical Foundations and
Applications of Graph Entropy, Wiley-Blackwell, 2016.
- [26] J.W. Peters, Theoretical and Algorithmic Results on Domination and Connectivity, Ph.D.
Dissertation, Clemson University,1986.
- [27] J.R. Lewis, Vertex-Edge and Edge-Vertex Domination in Graphs, Ph.D. Dissertation,
Clemson University, 2007.
- [28] A. Şahin, B. Şahin, Total edge-vertex domination, RAIRO Theoretical Informatic and
Applications, 54 (2020) 1.
- [29] M. Chellali, T.W. Haynes, S.T. Hedetniemi, T.M. Lewis, On ve-degrees and ev-degrees
in graphs, Discrete Math., 340 (2017) 31−38.
- [30] B. Horoldagva, K.C. Das, T. Selenge, On ve-degree and ev-degree of the graphs, Discrete
Optimization, 31 (2019),1-7.
- [31]S. Ediz, Predicting some physicochemical properties of octane isomers: A topological
approach using ev-degree and ve-degree Zagreb indices, Int. J. Syst. Sci. Appl. Math. 2
(2017), 87−92.
- [32] B. Şahin, S. Ediz, On ev-degree and ve-degree topological indices, Iranian J.
Mathematical Chemistry, 9 (4) (2018), 263-277.
- [33] Y. Chu, A. Rauf, M. Ishtiaq, M. K. Siddiqui, M. H. Muhammad, Topological
properties of polycyclic aromatic nanostars dendrimers, Polycyclic Aromatic
Compounds, in press.
- [34] J. Zhang, M. K. Siddiqui, A. Rauf, M. Ishtiaq, On ve-degree and ev-degree based
topological properties of single walled titanium dioxide nanotube, J. Cluster Science,
in press.
- [35] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of
alternant hydrocarbons, Chem. Phys. Lett. 17 (4) (1972), 535-538.
- [36] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math.
Comput. Chem. 50 (2004) 83–92.
- [37] K.C. Das, I. Gutman, B. Horoldagva, Comparing Zagreb indices and coindices of trees,
MATCH Commun. Math. Comput. Chem. 68 (2012), 189–198.
- [38] M. O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997), 219-225.
Grafların ve-derece, ev-derece ve Birinci Zagreb İndeks Entropileri
Year 2021,
Volume: 6 Issue: 2, 90 - 101, 01.06.2021
Bünyamin Şahin
,
Abdulgani Şahin
Abstract
Chellali et al. introduced two degree concepts, ve-degree and ev-degree (Chellali et al, 2017). The ve-degree of a vertex v equals to number of different edges which are incident to a vertex from the closed neighborhod of v. Moreover the ev-degree of an edge e=ab equals to the number of vertices of the union of the closed neighborhoods of a and b. The most private feature of these degree concepts is, total number of ve-degrees and total number of ev-degrees equal to first Zagreb index of the graphs for triangle-free graphs. In this paper we introduce ve-degree entropy, ev-degree entropy and investigate the relations between these entropies and the first Zagreb index entropy. Finally we obtain the maximal trees with respect to ve-degree irregularity index.
References
- [1] V. Kraus, M. Dehmer, F. Emmert-Streib, Probabilistic inequalities for evaluating structural
network measures, Inform. Sci. 288 (2014), 220–245.
- [2] M. Dehmer, F. Emmert-Streib, M. Grabner, A computational approach to construct a
multivariate complete graph invariant, Inform. Sci. 260 (2014), 200–208.
- [3] A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited, Entropy 14
(3) (2012), 559–570.
- [4] M. Dehmer, A. Mowshowitz, A case study of cracks in the scientific enterprise: reinvention
of information-theoretic measures for graphs, Complexity (2014).
- [5] Y. Chen, K. Wu, X. Chen, C. Tang, Q. Zhu, An entropy-based uncertainty measurement
approach in neighborhood systems, Inform. Sci. 279 (2014), 239–250.
- [6] C. Wang, A. Qu, Entropy, similarity measure and distance measure of vague soft sets and
their relations, Inform. Sci. 244 (2013) 92–106.
- [7] M. Dehmer, A. Mowshowitz, A history ofgraph entropy measures, Inform. Sci. 181 (2011),
57–78.
- [8] M. Dehmer, Information processing in complex networks: graph entropy and information
functionals, Appl. Math. Comput. 201 (2008), 82–94.
- [9] M. Dehmer, A. Mowshowitz, Y. Shi, Structural differentiation of graphs using Hosoya-
based indices, PLoS ONE 9 (7) (2014) e102459.
- [10] S. Dragomir, C. Goh, Some bounds on entropy measures in information theory, Appl.
Math. Lett. 10 (1997) 23–28.
- [11] Z. Chen, M. Dehmer, Y. Shi, A note on distance-based graph entropies, Entropy 16 (10)
(2014), 5416–5427.
- [12] J. Cao, M. Shi, L. Feng, On the edge-hyper-hamiltonian laceability of balanced
hypercubes, Discuss Math. Graph Theory. 36 (2016), 805–817.
- [13] L. Feng, J. Cao, W. Liu, S. Ding, H. Liu, The spectral radius of edge chromatic critical
graphs, Linear Algebra Appl. 492 (2016) 78–88.
- [14] G. Yu, X. Liu, H. Qu, Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs,
Appl. Math. Comput. 293 (2017) 287–292.
- [15] S. Cao, M. Dehmer, Y. Shi, Extremality of degree based graph entropies, Information
Sciences 278 (2014), 22-33.
- [16] S. Cao, M. Dehmer, Degree based entropies of networks revisited, Appl. Math. Comput.
261 (2015) 141-147.
- [17] K. C. Das, M. Dehmer, A conjecture regarding the extremal values of graph entropy
based on degree powers, Entropy18 (2016) #183.
- [18] K. C. Das, Y. Shi, Some properties on entropies of graphs, MATCH Commun. Math.
Comput. Chem. 78 (2017), 259-272.
- [19] S. Cao, M. Dehmer, Z. Kang, Network entropies based on independent sets and matchings,
Appl. Math. Comput. 307 (2017) 265–270.
- [20] P. Wan, X. Chen, J. Tu, M. Dehmer, S. Zhang, F. Emmert-Streib, On graph entropy
measures based on the number of independent sets and matchings Inform. Sci. 516 (2020),
491-504.
- [21] I. Gutman, B. Furtula, V. Katanic, Randic index and information AKCE International
Journal of Graphs and Combinatorics 15 (2018), 307–312.
- [22] M. Eliasi, On extrenal properties of general graph entropies, MATCH Commun. Math.
Comput. Chem. 79 (2018), 645–657.
- [23] M. Ghorbani, M. Dehmer, S. Zangi, On certain aspects of graph entropies of fullerenes,
MATCH Commun. Math. Comput. Chem. 81 (2019), 163–174.
- [24] R. Kazemi, Entropy of weighted graphs with the degree-based topological indices as
weights, , MATCH Commun. Math. Comput. Chem. 76 (2016), 69–80.
- [25] M. Dehmer, Z. Chen, X. Li, Y. Shi, F. Emmert-Streib, Mathematical Foundations and
Applications of Graph Entropy, Wiley-Blackwell, 2016.
- [26] J.W. Peters, Theoretical and Algorithmic Results on Domination and Connectivity, Ph.D.
Dissertation, Clemson University,1986.
- [27] J.R. Lewis, Vertex-Edge and Edge-Vertex Domination in Graphs, Ph.D. Dissertation,
Clemson University, 2007.
- [28] A. Şahin, B. Şahin, Total edge-vertex domination, RAIRO Theoretical Informatic and
Applications, 54 (2020) 1.
- [29] M. Chellali, T.W. Haynes, S.T. Hedetniemi, T.M. Lewis, On ve-degrees and ev-degrees
in graphs, Discrete Math., 340 (2017) 31−38.
- [30] B. Horoldagva, K.C. Das, T. Selenge, On ve-degree and ev-degree of the graphs, Discrete
Optimization, 31 (2019),1-7.
- [31]S. Ediz, Predicting some physicochemical properties of octane isomers: A topological
approach using ev-degree and ve-degree Zagreb indices, Int. J. Syst. Sci. Appl. Math. 2
(2017), 87−92.
- [32] B. Şahin, S. Ediz, On ev-degree and ve-degree topological indices, Iranian J.
Mathematical Chemistry, 9 (4) (2018), 263-277.
- [33] Y. Chu, A. Rauf, M. Ishtiaq, M. K. Siddiqui, M. H. Muhammad, Topological
properties of polycyclic aromatic nanostars dendrimers, Polycyclic Aromatic
Compounds, in press.
- [34] J. Zhang, M. K. Siddiqui, A. Rauf, M. Ishtiaq, On ve-degree and ev-degree based
topological properties of single walled titanium dioxide nanotube, J. Cluster Science,
in press.
- [35] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of
alternant hydrocarbons, Chem. Phys. Lett. 17 (4) (1972), 535-538.
- [36] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math.
Comput. Chem. 50 (2004) 83–92.
- [37] K.C. Das, I. Gutman, B. Horoldagva, Comparing Zagreb indices and coindices of trees,
MATCH Commun. Math. Comput. Chem. 68 (2012), 189–198.
- [38] M. O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997), 219-225.