Research Article
BibTex RIS Cite

Point-of-Interest Recommendation Based on Link Prediction in Bipartite Network

Year 2021, Volume: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Issue: Special, 154 - 161, 20.10.2021
https://doi.org/10.53070/bbd.990742

Abstract

The use of location-based social networks is increasing day by day. In these networks, users check-in Point of Interest (POI) that they like, and in a sense, they advise future users. The aim of this paper is to detect whether users from the same hometown check-in for similar POIs using the link prediction method, thus recommending new POIs. The method first models the user-POI bipartite network, and then new recommendations are generated by the link prediction method. Experiments conducted on real data in Foursquare have shown that the proposed method achieves high accuracy values.

References

  • [1] Gao, H. , Tang, J. Liu, H. (2015). Addressing the cold-start problem in location recommendation using geo-social correlations, Data Mining and Knowledge Discovery March 2015, ss. 299-323.
  • [2] Zheng, Y. (2011). Location-Based Social Networks: Users, Chapter 8.
  • [3] Noulas, A., Scellato, S., Mascolo, C., & Pontil, M. (2011). An Empirical Study of Geographic User Activity Patterns in Foursquare., Proceedings of the International AAAI Conference on Web and Social Media, cilt 5(1).
  • [4] Noulas, A. , Scellato, S. , Lambiotte, R. , Pontil, M. , Mascolo, C. (2012). A Tale of Many Cities: Universal Patterns in Human Urban Mobility, PLoS ONE, cilt 7(5) , Article e37027. DOI:10.1371/journal.pone.0037027
  • [5] Albakour, M..D., Deveaud, R. , Macdonald, C. and Ounis, I. (2014). Diversifying contextual suggestions from location-based social networks, Proceedings of the 5th Information Interaction in Context Symposium, ss. 125-134.
  • [6] Fulk, J. , Yuan ,Y. (2013). Location, Motivation, and Social Capitalization via Enterprise Social Networking, Journal of Computer-Mediated Communication, cilt 19(1), ss. 20-37.
  • [7] Gao , H. , Liu, H. (2013). Data Analysis on Location-Based Social Networks, Mobile Social Networking, ss. 165-194.
  • [8] Chang, J., Sun, E. (2011). Location 3: how users share and respond to location-based data on social networking sites, The International AAAI Conference on Web and Social Media.
  • [9] Long, X. , Joshi, J. (2013). A hits-based poi recommendation algorithm for location-based social networks, Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ss. 642-647.
  • [10] Gao, H. , Tang, J. , Liu, H. (2012c). gSCorr: modeling geo-social correlations for new check-ins on locationbased social networks , Proceedings of the 21st ACM international conference on Information and knowledge management , ss. 1582–1586.
  • [11] Ye, M. , Yin, P. , Lee, W. , Lee, D. (2011). Exploiting geographical influence for collaborative point-of-interest recommendation , nnual International ACM SIGIR Conference on Research and Development in, Information Retrieval, ss. 325-334.
  • [12] Bütün, E., Kaya, M. (2020). Predicting citation count of scientists as a link prediction problem. IEEE Transactions on Cybernetics, 50(10), 4518-4529.
  • [13] Bütün, E., Kaya, M. (2019). A pattern based supervised link prediction in directed complex networks. Physica A: Statistical Mechanics and its Applications, 525, 1136-1145.
  • [14] Aslan, S., Kaya, M. (2018). Topic recommendation for authors as a link prediction problem. Future Generation Computer Systems, 89, 249-264.
  • [15] Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
  • [16] Destek Vektör Makineleri. https://veribilimcisi.com/2017/07/19/destek-vektor-makineleri-support-vector-machine/
  • [17] Performans Ölçütleri. https://veribilimcisi.com/2017/07/14/dogruluk-olcumu-nasil-yapilir-accuracy-measure/
  • [18] Gao H, Barbier G, Goolsby R (2011). Harnessing the crowdsourcing power of social media for disaster relief, Intelligent Systems, IEEE, cilt 26(3), ss. 10-14.

İki Parçalı Ağda Bağlantı Tahminine Dayalı İlgi Çekici Nokta Tavsiyesi

Year 2021, Volume: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Issue: Special, 154 - 161, 20.10.2021
https://doi.org/10.53070/bbd.990742

Abstract

Konum tabanlı sosyal ağların kullanımı her geçen gün artmaktadır. Bu ağlarda kullanıcılar beğendikleri ilgi noktalarını (POI) check-in yapar ve bir anlamda gelecekteki kullanıcılara tavsiyelerde bulunurlar. Bu makalenin amacı, bağlantı tahmini yöntemini kullanarak aynı memleketteki kullanıcıların benzer POI'ler için check-in yapıp yapmadıklarını tespit etmek ve böylece yeni POI'ler önermektir. Yöntem önce kullanıcı-POI ikili ağını modeller ve ardından bağlantı tahmin yöntemi tarafından yeni öneriler oluşturulur. Foursquare'de gerçek veriler üzerinde yapılan testler, önerilen yöntemin yüksek doğruluk değerlerine ulaştığını göstermiştir.

References

  • [1] Gao, H. , Tang, J. Liu, H. (2015). Addressing the cold-start problem in location recommendation using geo-social correlations, Data Mining and Knowledge Discovery March 2015, ss. 299-323.
  • [2] Zheng, Y. (2011). Location-Based Social Networks: Users, Chapter 8.
  • [3] Noulas, A., Scellato, S., Mascolo, C., & Pontil, M. (2011). An Empirical Study of Geographic User Activity Patterns in Foursquare., Proceedings of the International AAAI Conference on Web and Social Media, cilt 5(1).
  • [4] Noulas, A. , Scellato, S. , Lambiotte, R. , Pontil, M. , Mascolo, C. (2012). A Tale of Many Cities: Universal Patterns in Human Urban Mobility, PLoS ONE, cilt 7(5) , Article e37027. DOI:10.1371/journal.pone.0037027
  • [5] Albakour, M..D., Deveaud, R. , Macdonald, C. and Ounis, I. (2014). Diversifying contextual suggestions from location-based social networks, Proceedings of the 5th Information Interaction in Context Symposium, ss. 125-134.
  • [6] Fulk, J. , Yuan ,Y. (2013). Location, Motivation, and Social Capitalization via Enterprise Social Networking, Journal of Computer-Mediated Communication, cilt 19(1), ss. 20-37.
  • [7] Gao , H. , Liu, H. (2013). Data Analysis on Location-Based Social Networks, Mobile Social Networking, ss. 165-194.
  • [8] Chang, J., Sun, E. (2011). Location 3: how users share and respond to location-based data on social networking sites, The International AAAI Conference on Web and Social Media.
  • [9] Long, X. , Joshi, J. (2013). A hits-based poi recommendation algorithm for location-based social networks, Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ss. 642-647.
  • [10] Gao, H. , Tang, J. , Liu, H. (2012c). gSCorr: modeling geo-social correlations for new check-ins on locationbased social networks , Proceedings of the 21st ACM international conference on Information and knowledge management , ss. 1582–1586.
  • [11] Ye, M. , Yin, P. , Lee, W. , Lee, D. (2011). Exploiting geographical influence for collaborative point-of-interest recommendation , nnual International ACM SIGIR Conference on Research and Development in, Information Retrieval, ss. 325-334.
  • [12] Bütün, E., Kaya, M. (2020). Predicting citation count of scientists as a link prediction problem. IEEE Transactions on Cybernetics, 50(10), 4518-4529.
  • [13] Bütün, E., Kaya, M. (2019). A pattern based supervised link prediction in directed complex networks. Physica A: Statistical Mechanics and its Applications, 525, 1136-1145.
  • [14] Aslan, S., Kaya, M. (2018). Topic recommendation for authors as a link prediction problem. Future Generation Computer Systems, 89, 249-264.
  • [15] Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
  • [16] Destek Vektör Makineleri. https://veribilimcisi.com/2017/07/19/destek-vektor-makineleri-support-vector-machine/
  • [17] Performans Ölçütleri. https://veribilimcisi.com/2017/07/14/dogruluk-olcumu-nasil-yapilir-accuracy-measure/
  • [18] Gao H, Barbier G, Goolsby R (2011). Harnessing the crowdsourcing power of social media for disaster relief, Intelligent Systems, IEEE, cilt 26(3), ss. 10-14.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence
Journal Section PAPERS
Authors

Elifgül Çakmak This is me 0000-0003-3000-331X

Buket Kaya 0000-0001-9505-181X

Mehmet Kaya 0000-0003-2995-8282

Publication Date October 20, 2021
Submission Date September 3, 2021
Acceptance Date September 16, 2021
Published in Issue Year 2021 Volume: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Issue: Special

Cite

APA Çakmak, E., Kaya, B., & Kaya, M. (2021). İki Parçalı Ağda Bağlantı Tahminine Dayalı İlgi Çekici Nokta Tavsiyesi. Computer Science, IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium(Special), 154-161. https://doi.org/10.53070/bbd.990742

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper