Research Article
BibTex RIS Cite

Adaptif Lineer Toplayıcı Ağırlıklarının Optimizasyonu: Benekli Sırtlan ve Kum Kedisi Sürü Algoritmalarının Karşılaştırması

Year 2024, Volume: 9 Issue: Issue: 2, 151 - 168
https://doi.org/10.53070/bbd.1455107

Abstract

Meta sezgisel optimizasyon algoritmaları, optimize edilmesi gereken karmaşık problemlerin çözümünde kullanılan doğal fenomenlerden ve hayvan davranışlarından esinlenen sezgisel tekniklerdir. 2017 yılında benekli sırtlanların avlanma stratejilerine dayalı olarak geliştirilen Benekli Sırtlan Optimizasyon (Spotted Hyena Optimization, SHO) ile 2022 yılında kum kedilerinin sürü davranışlarından ilham alınarak oluşturulan Kum Kedisi Sürü Optimizasyon (Sand Cat Swarm Optimization, SCSO), sürü tabanlı meta sezgisel optimizasyon algoritmalarıdır. Bu çalışmada, SHO ve SCSO algoritmalarını kullanarak belirli bir yöntemle yapılan Uyarlanabilir Finite Impulse Response (FIR) Süzgeç ağırlıklarının optimizasyonu yapılmaktadır. Belirli bir gürültüye sahip olan istenilen sinyali elde etmek amacıyla Adaptif Lineer Toplayıcıların ağırlıklarını optimize etmek için hata fonksiyonları kullanılmaktadır. Bu hata fonksiyonları Mean Square Error (MSE) fonksiyonu, Mean Absolute Error (MAE) fonksiyonu ve Least Mean Squared Error (LMS) fonksiyonudur. Bu çalışmada, tüm fonksiyonları kullanarak Adaptif Lineer Toplayıcı işaretleri SHO ve SCSO algoritmaları ile optimize edilmiş ve grafikler aracılığıyla kendi aralarında karşılaştırılmıştır. SHO ve SCSO algoritmaları kullanılarak hata fonksiyonlarından sırası ile SHO için 0.5083 (MSE), 0.7153 (LMS) ve 0.4168 (MAE); SCSO için ise 0.0695 (MSE), 0.2924 (LMS) ve 0.2151 (MAE) sonuçlarına ulaşılmıştır. Grafikler incelendiğinde, en optimal çözümün her iki algoritma için de MSE ile sağlandığı sonucuna varılmaktadır. Çalışma sonuçlarına göre, SCSO algoritmasının SHO algoritmasına göre Adaptif Lineer Toplayıcı tasarımında daha yüksek bir başarı oranına sahip olduğu sonucuna varılmıştır.

References

  • Ababneh, J., & Bataineh, M. (2008). Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digital Signal Processing, 657-668.
  • Aslan, C., Seyyarer, E., & Uçkan, T. (2023). Honey Badger Optimizasyon Algoritması ile Üç Elemanlı Kafes Sisteminin Ağırlık ve Maliyet Minimizasyonu. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 441-449.
  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM computing surveys (CSUR), 268-308.
  • Boudjelaba, K., Ros, F., & Chikouche, D. (2014). Potential of particle swarm optimization and genetic algorithms for FIR filter design. Circuits, Systems, and Signal Processing, 3195-3222.
  • Brown M., A. P., J., H. C., & H., W. (1993). How Biased is Your Multi-Layered Perceptron?. World Congress on Neural Networks, (s. 507-511). San Diego.
  • Chen, S., & Zheng, J. (2023). Sand cat arithmetic optimization algorithm for global optimization engineering design problems. Journal of Computational Design and Engineering, 2122-2146.
  • Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 48-70.
  • Dwivedi, A., Ghosh, S., & Londhe, N. (2018). Review and analysis of evolutionary optimization-based techniques for FIR filter design. Circuits, Systems, and Signal Processing, 4409-4430.
  • Ghafori, S., & Gharehchopogh, F. (2022). Advances in spotted hyena optimizer: a comprehensive survey. Archives of computational methods in engineering, 1569-1590.
  • Karaboğa, N., & C. A. Koyuncu. (2005). Diferansiyel Gelişim Algoritması Kullanılarak Adaptif Lineer Toplayıcı Tasarımı. III. Otamasyon Sempozyumu, (s. 216-220). Denizli.
  • Karaboğa, N., & Koyuncu, C. A. (2005). Diferansiyel Gelişim Algoritması Kullanarak Sinyal Kestirimine Yönelik Adaptif SDY Süzgeç Tasarımı. II. İletişim Teknolojileri Ulusal Sempozyumu-İTUSEM, (s. 91-95). Adana.
  • Karakaş, M., & Latifoğlu, F. (2021). Optimizasyon Tabanlı FIR Süzgeç Tasarımlarında Performans Analizi. Avrupa Bilim ve Teknoloji Dergisi, 8-22.
  • Kaur, H., Saini, S., & Raut, Y. (2023). The Application of Hybrid Optimization For FIR Filter Design. In 2023 1st International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP) (s. 386-391). IEEE.
  • Kumar, N. (2013). Optimal design of fir and iir filters using some evolutionary algorithms. Master of Technology Thesis in Electrical Engineering, National Institute of Technology. Durgapur.
  • Kumar, V., Chhabra, J., & Kumar, D. (2014). Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems. Journal of Computational Science, 144-155.
  • Luo, Q., Li, J., & Zhou, Y. (2019). Spotted hyena optimizer with lateral inhibition for image matching. Multimedia Tools and Applications, 34277-34296.
  • Majhi, R., Panda, G., & Majhi, B. (2009). Robust prediction of stock indices using PSO based adaptive linear combiner. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (s. 312-317). Coimbatore: IEEE.
  • Najjarzadeh, M., & Ayatollahi, A. (2008). FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In 2008 IEEE International Symposium on Signal Processing and Information Technology (s. 129-132). IEEE.
  • Oppenheim, A., Buck, J., Daniel, M., Willsky, A., Nawab, S., & Singer, A. (1997). Signals & systems. Upper Saddle River, New Jersey, USA.
  • Ranganathan, E., & Natarajan, R. (2022). Spotted hyena optimization method for harvesting maximum PV power under uniform and partial-shade conditions. Energies, 2850.
  • Reddy, K., & Sahoo, S. (2015). An approach for FIR filter coefficient optimization using differential evolution algorithm. AEU-International Journal of Electronics and Communications, 101-108.
  • Saha, S., Ghoshal, S., Kar, R., & Mandal, D. (2013). Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA transactions, 781-794.
  • Seifossadat, S., Razzaz, M., Moghaddasian, M., & Monadi, M. (2007). Harmonic estimation in power systems using adaptive perceptrons based on a genetic algorithm. WSEAS Transactions On Power Systems, 239-244.
  • Seyyedabbasi, A., & Kiani, F. (2023). Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 2627-2651.
  • Shao, P., Wu, Z., Zhou, X., & Tran, D. (2017). FIR digital filter design using improved particle swarm optimization based on refraction principle. Soft Computing, 2631-2642.
  • Singh, S., Singh, G., Bose, S., & Shiva. (2022). Fir filter design using grasshopper optimization algorithm. In Recent Advances in Metrology: Select Proceedings of AdMet 2021 (s. 249-257). Singapore: Springer Nature Singapore. Srivastava, S., Dwivedi, A., & Nagaria, D. (2020). Low complexity FIR filter design using biogeography optimization algorithm and its improved version. In 2020 IEEE Students Conference on Engineering & Systems (SCES) (s. 1-5). IEEE.
  • Wu, D., Rao, H., Wen, C., Jia, H., Liu, Q., & Abualigah, L. (2022). Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems. Mathematics, 4350.
  • Yadav, S., Yadav, R., Kumar, A., & Kumar, M. (2021). A novel approach for optimal design of digital FIR filter using grasshopper optimization algorithm. ISA transactions, 196-206.

Optimization of Adaptive Linear Combiner Weights: A Comparison of Spotted Hyena and Sand Cat Swarm Algorithms

Year 2024, Volume: 9 Issue: Issue: 2, 151 - 168
https://doi.org/10.53070/bbd.1455107

Abstract

Abstract— Meta-heuristic optimization algorithms are intuitive techniques inspired by natural phenomena and animal behaviors, utilized in solving complex problems that require optimization. Spotted Hyena Optimization (SHO), developed based on the hunting strategies of spotted hyenas in 2017, and Sand Cat Swarm Optimization (SCSO), created in 2022 by drawing inspiration from the herd behaviors of sand cats, are examples of herd-based meta-heuristic optimization algorithms. In this study, the optimization of Adaptive Finite Impulse Response (FIR) filter weights is performed using SHO and SCSO algorithms with a specific method. Error functions, including Mean Square Error (MSE), Mean Absolute Error (MAE), and Least Mean Squared Error (LMS), are employed to optimize the weights of Adaptive Linear Collectors aiming to obtain the desired signal with specific noise. Using all these functions, Adaptive Linear Collectors' signals are optimized with SHO and SCSO algorithms and compared through graphs. Results show that using SHO and SCSO algorithms, the respective error values are as follows: for SHO - 0.5083 (MSE), 0.7153 (LMS), and 0.4168 (MAE); for SCSO - 0.0695 (MSE), 0.2924 (LMS), and 0.2151 (MAE). Upon examining the graphs, it is concluded that the most optimal solution for both algorithms is achieved through MSE. According to the study results, SCSO algorithm demonstrates a higher success rate in the design of Adaptive Linear Collectors compared to the SHO algorithm.

References

  • Ababneh, J., & Bataineh, M. (2008). Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digital Signal Processing, 657-668.
  • Aslan, C., Seyyarer, E., & Uçkan, T. (2023). Honey Badger Optimizasyon Algoritması ile Üç Elemanlı Kafes Sisteminin Ağırlık ve Maliyet Minimizasyonu. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 441-449.
  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM computing surveys (CSUR), 268-308.
  • Boudjelaba, K., Ros, F., & Chikouche, D. (2014). Potential of particle swarm optimization and genetic algorithms for FIR filter design. Circuits, Systems, and Signal Processing, 3195-3222.
  • Brown M., A. P., J., H. C., & H., W. (1993). How Biased is Your Multi-Layered Perceptron?. World Congress on Neural Networks, (s. 507-511). San Diego.
  • Chen, S., & Zheng, J. (2023). Sand cat arithmetic optimization algorithm for global optimization engineering design problems. Journal of Computational Design and Engineering, 2122-2146.
  • Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 48-70.
  • Dwivedi, A., Ghosh, S., & Londhe, N. (2018). Review and analysis of evolutionary optimization-based techniques for FIR filter design. Circuits, Systems, and Signal Processing, 4409-4430.
  • Ghafori, S., & Gharehchopogh, F. (2022). Advances in spotted hyena optimizer: a comprehensive survey. Archives of computational methods in engineering, 1569-1590.
  • Karaboğa, N., & C. A. Koyuncu. (2005). Diferansiyel Gelişim Algoritması Kullanılarak Adaptif Lineer Toplayıcı Tasarımı. III. Otamasyon Sempozyumu, (s. 216-220). Denizli.
  • Karaboğa, N., & Koyuncu, C. A. (2005). Diferansiyel Gelişim Algoritması Kullanarak Sinyal Kestirimine Yönelik Adaptif SDY Süzgeç Tasarımı. II. İletişim Teknolojileri Ulusal Sempozyumu-İTUSEM, (s. 91-95). Adana.
  • Karakaş, M., & Latifoğlu, F. (2021). Optimizasyon Tabanlı FIR Süzgeç Tasarımlarında Performans Analizi. Avrupa Bilim ve Teknoloji Dergisi, 8-22.
  • Kaur, H., Saini, S., & Raut, Y. (2023). The Application of Hybrid Optimization For FIR Filter Design. In 2023 1st International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP) (s. 386-391). IEEE.
  • Kumar, N. (2013). Optimal design of fir and iir filters using some evolutionary algorithms. Master of Technology Thesis in Electrical Engineering, National Institute of Technology. Durgapur.
  • Kumar, V., Chhabra, J., & Kumar, D. (2014). Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems. Journal of Computational Science, 144-155.
  • Luo, Q., Li, J., & Zhou, Y. (2019). Spotted hyena optimizer with lateral inhibition for image matching. Multimedia Tools and Applications, 34277-34296.
  • Majhi, R., Panda, G., & Majhi, B. (2009). Robust prediction of stock indices using PSO based adaptive linear combiner. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (s. 312-317). Coimbatore: IEEE.
  • Najjarzadeh, M., & Ayatollahi, A. (2008). FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In 2008 IEEE International Symposium on Signal Processing and Information Technology (s. 129-132). IEEE.
  • Oppenheim, A., Buck, J., Daniel, M., Willsky, A., Nawab, S., & Singer, A. (1997). Signals & systems. Upper Saddle River, New Jersey, USA.
  • Ranganathan, E., & Natarajan, R. (2022). Spotted hyena optimization method for harvesting maximum PV power under uniform and partial-shade conditions. Energies, 2850.
  • Reddy, K., & Sahoo, S. (2015). An approach for FIR filter coefficient optimization using differential evolution algorithm. AEU-International Journal of Electronics and Communications, 101-108.
  • Saha, S., Ghoshal, S., Kar, R., & Mandal, D. (2013). Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA transactions, 781-794.
  • Seifossadat, S., Razzaz, M., Moghaddasian, M., & Monadi, M. (2007). Harmonic estimation in power systems using adaptive perceptrons based on a genetic algorithm. WSEAS Transactions On Power Systems, 239-244.
  • Seyyedabbasi, A., & Kiani, F. (2023). Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 2627-2651.
  • Shao, P., Wu, Z., Zhou, X., & Tran, D. (2017). FIR digital filter design using improved particle swarm optimization based on refraction principle. Soft Computing, 2631-2642.
  • Singh, S., Singh, G., Bose, S., & Shiva. (2022). Fir filter design using grasshopper optimization algorithm. In Recent Advances in Metrology: Select Proceedings of AdMet 2021 (s. 249-257). Singapore: Springer Nature Singapore. Srivastava, S., Dwivedi, A., & Nagaria, D. (2020). Low complexity FIR filter design using biogeography optimization algorithm and its improved version. In 2020 IEEE Students Conference on Engineering & Systems (SCES) (s. 1-5). IEEE.
  • Wu, D., Rao, H., Wen, C., Jia, H., Liu, Q., & Abualigah, L. (2022). Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems. Mathematics, 4350.
  • Yadav, S., Yadav, R., Kumar, A., & Kumar, M. (2021). A novel approach for optimal design of digital FIR filter using grasshopper optimization algorithm. ISA transactions, 196-206.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence (Other)
Journal Section PAPERS
Authors

Ebubekir Seyyarer 0000-0002-8981-0266

Taha Yasir Yeşil 0009-0003-2260-7428

Abdulmelik Öztunç 0009-0001-8915-9530

Early Pub Date December 24, 2024
Publication Date
Submission Date March 18, 2024
Acceptance Date July 28, 2024
Published in Issue Year 2024 Volume: 9 Issue: Issue: 2

Cite

APA Seyyarer, E., Yeşil, T. Y., & Öztunç, A. (2024). Adaptif Lineer Toplayıcı Ağırlıklarının Optimizasyonu: Benekli Sırtlan ve Kum Kedisi Sürü Algoritmalarının Karşılaştırması. Computer Science, 9(Issue: 2), 151-168. https://doi.org/10.53070/bbd.1455107

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper