Research Article
BibTex RIS Cite

Analysis of Artificial Intelligence Readiness Performances of G7 Countries: An Application with LOPCOW-based MARCOS Method

Year 2024, Volume: 9 Issue: Issue: 2, 99 - 121
https://doi.org/10.53070/bbd.1537792

Abstract

The artificial intelligence (AI) readiness performance of major economies can significantly impact the global economy. Therefore, analyzing the AI readiness performance of these economies is of great importance. In this study, the AI readiness performances of G7 countries were assessed using the most recent Government Artificial Intelligence Readiness Index (GAIRI) data for 2023. The analysis revealed that the importance of GAIRI components varies by country, with Data and Infrastructure generally being the most significant components. The countries were ranked according to their AI readiness performances using the LOPCOW-based MARCOS method as follows: USA, United Kingdom, Canada, France, Japan, Germany, and Italy. Notably, Italy's AI readiness performance was below the average, indicating the need for improvement to enhance its contribution to the global economy. The method applied proved to be sensitive in sensitivity analysis, credible and reliable in comparative analysis, and robust and stable in simulation analysis.

References

  • Abdulla, A., Baryannis, G., & Badi, I. (2023). An integrated machine learning and MARCOS method for supplier evaluation and selection. Decision Analytics Journal, 9, 1-11. doi: 10.1016/j.dajour.2023.100342
  • Adigwe, C. S., Olaniyi, O. O., Olabanji, S. O., Okunleye, O. J., Mayeke, N. R., & Ajayi, S. A. (2024). Asian Journal of Economics, Business and Accounting. Forecasting the Future: The Interplay of Artificial Intelligence, Innovation and Competitiveness and its Effect on the Global Economy, 24(4), 126-146. doi: 10.9734/AJEBA/2024/v24i41269
  • Aghion, P., Jones, B. F., & Jones, C. I. (2019). Artificial intelligence and economic growth. In: A. Agrawal, J. Gans, & A. Goldfarb (Ed.). The economics of artificial intelligence: An agenda (p. 237–290). doi:10.7208/chicago/9780226613475.003.0009). Chicago: University of Chicago Press.
  • Allen, G. C., & Thadani, A. (2023). Advancing cooperative AI governance at the 2023 G7 summit. Washington: Center for Strategic and International Studies.
  • AlSedrah, M. K. (2017). ARTIFICIAL intelligence. Kuwait: The American University of the Middle East.
  • Atal, A. K. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin, Learning outcomes of classroom research (p. 459-463). Madurai: L Ordine Nuovo Publication.
  • Badi, I., Pamucar, D., Stevic, Ž., & Muhammad, L. J. (2023). Wind farm site selection using BWM-AHP-MARCOS method: A case study of Libya. Scientific African, 19, 1-13. doi: 10.1016/j.sciaf.2022.e01511.
  • Barai, V. (2021). Artificial intelligence. In J. Karthikeyan, S. T. Hie, & N. Y. Jin, Learning outcomes of classroom research (p. 431-437). Madurai: L Ordine Nuovo Publication.
  • Bates, M. J. (2023). AI 101: An introduction to artificial intelligence:Unlocking the power and potential of AI for today's world . Independently published.
  • Bektaş, S. (2022). Türk sigorta sektörünün 2002-2021 dönemi için MEREC, LOPCOW, COCOSO, EDAS ÇKKV yöntemleri ile performansının değerlendirilmesi. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 16(2), 247-283. doi: 10.46520/bddkdergisi.1178359
  • Binh, V., Tuyen, V., Thanh, D. V., Duong, V., Dung, N. T., & Thao, L. P. (2024). Application of MARCOS method for determining best process factor for EDM using graphite electrodes. Journal of Harbin Engineering University, 45(2), 324-334.
  • Biswas, S., & Joshi, N. (2023). A performance based ranking of initial public offerings (IPOs) in India. Jgournal of Decision Analytics and Intelligent Computing, 3(1), 15-32. doi: 10.31181/10023022023b
  • Biswas, S., Bandyopadhyay, G., & Mukhopadhyaya, J. N. (2022). A multi-criteria based analytic framework for exploring the impact of Covid-19 on firm performance in emerging market. Decision Analytics Journal, 5, 1-26. doi: 10.1016/j.dajour.2022.100143
  • Biswas, S., Datta, D., & Kar, S. (2023). Energy efficiency and environmental sustainability: A multi criteria based comparison of BRICS and G7 countries. In S. Sarkar, S. Gupta, & A. K. Shaw, Emerging technology and management trends in environment and sustainability (p. 107-124). Oxfordshire: Routledge.
  • Cazzaniga, M., Jaumotte, F., Li, L., Melina, G., Panton, A. J., Pizzinelli, C., . Tavares, M. M. (2024). Gen-AI: Artificial intelligence and the future of work. Washington: International Monetary Fund.
  • Cheng, R., Fan, J., Wu, M., & Seiti, H. (2024). A large-scale multi-attribute group decision-making method with R-numbers and its application to hydrogen fuel cell logistics path selection. Complex & Intelligent Systems, 10, 5213–5260. doi: 10.1007/s40747-024-01437-9
  • Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelligence on innovation. NBER Working Paper Series(24449), 1-40.
  • Coole, M., Evans, D., & Medbury, J. (2021). Artificial intelligence and security technologies adoption guidance document. Virginia: ASIS FOUNDATION.
  • Dampitakse, K., Kungvantip, V., Jermsittiparsert, K., & Chienwattanasook, K. (2021). The impact of economic growth, financial development, financial performance and capital growth on the adoption of artificial intelligence in the Asean countries. Journal of Management Information and Decision Sciences, 24(4), 1-14.
  • Das, A., Chaudhuri, T., Roy, S. S., Biswas, S., & Guha, B. (2023). Selection of appropriate portfolio optimization strategy. Theoretical and Applied Computational Intelligence, 1(1), 58-81. doi: 10.31181/taci1120237
  • Demir, G., Chatterjee, P., Kadry, S., Abdelhadi, A., & Pamučar, D. (2024). Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) Method: A Comprehensive Bibliometric Analysis. Decision Making: Applications in Management and Engineering, 7(2), 313-336. doi: 10.31181/dmame7220241137
  • Dhruva, S., Krishankumar, R., Zavadskas, E. K., Ravichandran, K. S., & Gandomi, A. H. (2024). Selection of suitable cloud vendors for health centre: A personalized decision framework with fermatean fuzzy set, LOPCOW, and CoCoSo. INFORMATICA, 35(1), 65–98. doi: 10.15388/23-INFOR537
  • Dinh, V. T., Tran, H. D., Tran, Q. H., Vu, D. B., Vu, D., Vu, N. P., & Nguyen, T.-T. (2024). Multi-Objective optimization of a two-stage helical gearbox using MARCOS method. Designs, 8, 1-17. doi: 10.3390/designs8030053
  • Du, J. (2024). The Impact of Artificial Intelligence Adoption on employee unemployment: A multifaceted relationship. International Journal of Social Sciences and Public Administration, 2(3), 321-327. doi: 10.62051/ijsspa.v2n3.45
  • Dua, T. (2024). PSI-SAW and PSI-MARCOS Hybrid MCDM Methods. Engineering, Technology & Applied Science Research, 14(4), 15963-15968. doi: 10.48084/etasr.7992
  • Ecer, F. (2020). Çok kriterli karar verme. Ankara: Seçkin Yayıncılık.
  • Ecer, F., & Pamucar, D. (2022). A novel LOPCOW-DOBI multi-criteris sustainability performance assessmwnt methodology: an application in developing country banking sector. Omega, 1-35. doi: 10.1016/j.omega.2022.102690.
  • Ecer, F., Murat, T., Dinçer, H., & Yüksel, S. (2024). A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: A case study of Türkiye. Financial Innovation, 10(31), 1-29. doi: 10.1186/s40854-023-00543-w
  • Ecer, F., Ögel, İ. Y., Krishankumar, R., & Tirkolaee, E. B. (2023). The q rung fuzzy LOPCOW VIKOR model to assess the role of unmanned aerial vehicles for precision agriculturerealization in the Agri Food 4.0 era. Artificial Intelligence Review, 56, 13373–13406. doi: 10.1007/s10462-023-10476-6
  • El-Araby, A., Sabry, I., & El-Assal, A. (2024). Ranking Performance of MARCOS Method for Location Selection Problem in the Presence of Conflicting Criteria. Decision Making Advances, 2(1), 148-162. doi: 10.31181/dma21202435
  • Erdoğan, B., & Aydın, Y. (2023). Performance analysis of insurance companies traded on BIST: MARCOS method. Turkish Research Journal of Academic Social Science, 6(2), 225-232. doi: 10.59372/turajas.1394285
  • Ferreira, P., Teixeira, J. G., & Teixeira, L. F. (2020). Understanding the impact of artificial intelligence on services. In H. Nóvoa, M. Drăgoicea, & N. Kühl (Ed.), Exploring service science-IESS 2020-lecture notes in business information processing (p. 202–213). doi: 10.1007/978-3-030-38724-2_15). Springer.
  • Garg, S., Haralayya, B., Qudah, M. A., Maguluri, L. P., András , S., & Sameen, A. Z. (2024). The Impact of Artificial Intelligence on Management Productivity and Efficiency. Business, Management and Economics Engineering, 22(1), 424-434.
  • Ghosh, R. (2021). Artificial intelligence (AI). In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 201-208). Madurai: L Ordine Nuovo Publication.
  • Gigovic, L., Pamucar, D., Bajic, Z., & Milicevic, M. (2019). The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots. Sustainability, 8, 1-30.
  • Gure, N. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 348-354). Madurai: L Ordine Nuovo Publication.
  • Hadad, S. H., Subhan, Setiawansyah, Arshad, M. W., Yudhistira, A., & Rahmanto, Y. (2024). Combination of logarithmic percentage change-driven objective weighting and multi-attributive ideal-real comparative analysis in determining the best production employees. Jurnal Teknik Informatika (JUTIF), 5(3), 843-853. DOI: 10.52436/1.jutif.2024.5.3.2057
  • Hankins, E., Nettel, P. F., Martinescu, L., Grau, G., & Rahim, S. (2023). Goverment artifical ıntellingence readiness ındex (2023). Frederiksberg: Oxford Insight.
  • Haugeland, J. (1985). Artificial intelligence: The very idea. MIT Press: Massachusetts.
  • Hu, G., & Yu, B. (2022). Artificial intelligence and applications. Journal of Artificial Intelligence and Technology, 2, 39-41.
  • Jackson, P. C. (1985). Introduction to artifical intelligence. New York: Dover Publications.
  • Johns, A. (2021). Journey towards a synthetic consciousness. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 56-64). Madurai: L Ordine Nuovo Publication.
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13, 1-20.
  • Kim, S.-K., & Huh, J.-H. (2020). Consistency of medical data using intelligent neuron faster R-CNN algorithm for smart health care application. Healthcare, 8, 1-26. doi: 10.3390/healthcare8020185
  • Krausová, A. (2017). Intersections between law and artificial intelligence. International Journal of Computer (IJC), 27(1), 55-68.
  • Kulkov, I., Kulkova, J., Rohrbeck, R., Menvielle, L., Kaartemo, V., & Makkonen, H. (2023). Artificial intelligence-driven sustainable development:Examining organizational, technical, and processing approaches to achieving global goals. Sustainable Development, 1-15. doi: 10.1002/sd.2773
  • Kumar, S., Bhaumik, S., Patnaik, L., Maity, S. R., & Paleu, V. (2022). Application of Integrated BWM Fuzzy-MARCOS approach for coating material selection in tooling industries. Materials, 15, 1-29. doi: 10.3390/ma15249002
  • Li, Z., Xing, Y., & Dong, P. (2024). A novel q rung orthopair fuzzy best worst method, Shannon entropy and MARCOS method for mobile medical app service quality evaluation. Applied Soft Computing, 155, 1-15. doi: 10.1016/j.asoc.2024.1114171
  • Liu, T., Gao, K., & Rong, Y. (2024). An integrated picture fuzzy operational competitiveness ratings group decision approach for evaluating the enterprise digital transformation. Granul. Comput., 9(32), 15-29. doi: 10.1007/s41066-024-00451-z
  • Lucci, S., & Kopec, D. (2016). Artificial intelligence in the 21st century. New York: David Pallai.
  • Lukic, R. (2022). Application of MARCOS method in evaluation of efficiency of trade companies in Serbia. Economic Outlook, 24(1), 1-14. doi: 10.5937/ep24-38921
  • Lukić, R. (2023). Research of the economic positioning of the Western Balkan countries using the LOPCOW and EDAS methods. JOURNAL OF ENGINEERING MANAGEMENT AND COMPETITIVENESS (JEMC), 13(2), 106-116. doi: 10.5937/JEMC2302106L
  • Lukić, R. (2024). Research on the dynamics of the performance positioning of the trade in Serbia using the LOPCOW and EDAS methods. Applied Research in Administrative Sciences, 5(1), 31-40. doi: 10.24818/ARAS/2024/5/1.03
  • Luo, X. (2023). Artificial intelligence and corporate innovation: Intelligent transformation and development trends under technological empowerment. In J. Cifuentes-Faura, C. T. Dang, & X. Li (Ed.), Proceedings of the 2nd International Conference on Business and Policy Studies (p. 201-207). doi: 10.54254/2754-1169/45/20230285). New York: Springer.
  • Mastilo, Z., Štilić, A., Gligović, D., & Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. Journal of Central Banking Theory and Practice, 1, p. 167-197. doi: 10.2478/jcbtp-2024-0008.
  • Meriçelli, M., & İncetaş, M. O. (2023). Artificial intelligence & sports. In I. Bayraktar (Ed.), The use of developing technology in sports (p. 13-28). doi: 10.58830/ozgur.pub315.c1477). Gaziantep: Özgür Publications.
  • Miklif, H. Z., Dadoosh, A. A., & Neamah, Z. H. (2021). The role of artificial intelligence in stimulating economic growth. Journal of Global Scientific Research, 6(8), 1602-1617.
  • Nahar, S. (2024). Modeling the effects of artificial intelligence (AI)-based innovation on sustainable development goals (SDGs): Applying a system dynamics perspective in a cross-country setting. Technological Forecasting & Social Change, 201, 1-27. doi: org/10.1016/j.techfore.2023.123203
  • Naveenkumar, K. H. (2021). Artificial intelligence. InJ. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning Outcomes of Classroom Research (p. 82-90). Madurai: L Ordine Nuovo Publication.
  • OECD. (2023). G7 Hiroshima process on artificial intelligence (AI). Paris: OECDPublisching.
  • Oliveira, R. C., & Silva, R. D. (2023). Artificial intelligence in agriculture: Benefits, challenges and trends. Appl. Sci., 13, 1-17. doi: 10.3390/app13137405.
  • Pavaloiu, A. (2016). The impact of artificial intelligence on global trends. Journal of Multidisciplinary Developments, 1(1), 21-37.
  • Piton, C. (2023). The economic consequences of artificial intelligence : An overview. NBB Economic Review(1), 2-28.
  • Prasad, P. H. (2021). Aspects of artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 453-458). Madurai: L Ordine Nuovo Publication.
  • Putra, A. D., Arshad, M. W., Setiawansyah, & Sintaro, S. (2024). Decision Support System for Best Honorary Teacher Performance Assessment Using a Combination of LOPCOW and MARCOS. Journal of Computer System and Informatics (JoSYC), 5(3), 578-590. doi: 10.47065/josyc.v5i3.5127
  • Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8(11), 1-14.
  • Rajesh, T. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 28-36). Madurai: L Ordine Nuovo Publication.
  • Ritanya, J. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 219-228). Madurai: L Ordine Nuovo Publication.
  • Rogerson, A., Hankins, E., Nettel, P. F., & Rahim, S. (2022). Goverment Artifical Intellingence Readiness Index (2022). Frederiksberg: Oxford Insights.
  • Rong, Y., Yu, L., Liu, Y., Simic , V., & Garg, H. (2023). The FMEA model based on LOPCOW ARAS methods with interval valued Fermatean fuzzy information for risk assessment of R&D projects in industrial robot offline programming systems. Computational and Applied Analysis, 43, 1-43. doi: 10.1007/s40314-023-02532-2
  • Saba, C. S., & Monkam, N. (2024). Leveraging the potential of artificial intelligence (AI) in exploring the interplay among tax revenue, institutional quality, and economic growth in the G 7 countries. AI & SOCIETY, 1-23. doi:10.1007/s00146-024-01885-4
  • Salas-Pilco, S. Z. (2021). Comparison of national artificial intelligence (AI): Strategic policies and priorities. In T. Keskin , & R. D. Kiggins (Ed.), Towards an international political economy of artificial intelligence, international political economy series (p. 195-216). doi: 10.1007/978-3-030-74420-5_9). New York: Palgrave Macmillan.
  • Samuel, D. M. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning Outcomes Of Classroom Research (p. 100-107). Madurai: L Ordine Nuovo Publication.
  • Sanyal, A., Biswas, S., & Sur, S. (tarih yok). An Integrated Full Consistent LOPCOW-EDAS Framework For Modelling Consumer Decision Making for Organic Food Selection. Yugoslav Journal of Operations Research, [S.l.], 1-38. doi: 10.2298/YJOR240315022S
  • Sauerbrei, A. (2023). The impact of artificial intelligence on the person centred, doctor patient relationship: some problems and solutions. BMC Medical Informatics and Decision Making, 23(73), 1-14. doi: 10.1186/s12911-023-02162-y
  • Seal, D. (2021). Assignment on English communication. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 278-283). Madurai: L Ordine Nuovo Publication.
  • Sharma, K. (2021). Why artificial intelligence stands out? In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 161-170). Madurai: L Ordine Nuovo Publication.
  • Sheikh, H., Prins, C., & Schrijvers , E. (2023). Artificial intelligence: Definition and background. In H. Sheikh, C. Prins, & E. Schrijvers (Ed.), Mission AI-The New System Technology (p. 15-41. doi:10.1007/978-3-031-21448-6_2). New York: Springer, Cham.
  • Shen, Y., & Yu, F. (2021). The influence of artificial intelligence on art design in the digital age. Hindawi Scientific Programming, 1-10. doi: 10.1155/2021/4838957
  • Singh, T., Gehlen, G. d., Singh, V., Ferreira, N. F., de Barros, L. Y., Lasch, G., . . . Neis, P. D. (2024). Selection of automotive brake friction composites reinforced by agro-waste and natural fiber: An integrated multi-criteria decision-making approach. Results in Engineering, 1-42. doi: 10.1016/j.rineng.2024.102030
  • Solos, W. K., & Leonard, J. (2022). On the impact of artificial intelligence on economy. AI & Economy, 41(1), 551-560. doi: 10.15354/si.22.re066
  • Sulicha, A., Sołoducho-Pelc, L., & Grzesiaka, S. (2023). Artificial Intelligence and sustainable development in business management context–bibliometric review. Procedia Computer Science, 225, 3727–3735. doi: 10.1016/j.procs.2023.10.368
  • Szołtysek, J., & Stęchły, J. (2023). The relationship of artificial intelligence and education – opportunities and threats for the parties of the educational process in the urban context. figshare. doi: 10.6084/m9.figshare.23264621.v1
  • Tejaswi, L. (2021). Artificial intelligence and humanity artificial. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (pp. 209-218). Madurai: L Ordine Nuovo Publication.
  • Thamik, H., & Wu, J. (2022). The impact of artificial intelligence on sustainable development in electronic markets. Sustainability, 14, 1-20. doi: 10.3390/su14063568
  • Ulutaş, A., Balo, F., & Topal, A. (2023). Identifying the most efficient natural fibre for common commercial building insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT model. Polymers, 15, 1-23. doi: 10.3390/polym15061500
  • Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI MACONT model. Expert Systems with Applications, 241(1), 1-35. doi: 10.1016/j.eswa.2023.122680
  • Union, T. I. (2018). Assessing the economic impact of artificial intelligence. Geneva: ITU.
  • Wang, Y., Wang, W., Wang, Z., Deveci, M., Roy, S. K., & Kadry, S. (2024). Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method. Information Sciences(664), 1-22. doi: 10.1016/j.ins.2024.120326
  • Warwick, K. (2012). Artificial Intelligence. New York: Routledge.
  • Xue, Y., Fang, C., & Dong, Y. (2021). The impact of new relationship learning on artificial intelligence technology innovation. International Journal of Innovation Studies, 5, 2-8. doi: 10.1016/j.ijis.2020.11.001.
  • Yoganandham, G., & Elanchezhian, G. (2023). Artificial intelligence and economic growth with reference to decision-making, social governance, accelerate industry 4.0, and foster innovation -A theoretical assessment. Science, Technology and Development, 13(8), 224-236.
  • Zhao, H., & Guo, S. (2024). Urban integrated energy system construction plan selection: A hybrid multi-criteria decision-making framework. Environ. Dev. Sustain., 1-13. doi: 10.1007/s10668-024-04491-y
  • Zia, M. T., Nadim, M., Khan, M. A., Akram, N., & Atta, F. (2024). The Role and Impact of Artificial Intelligence on Project Management. The Asian Bulletin of Big Data Management, 4(2), 178-185. doi: 10.62019/abbdm.v4i02.160

G7 Ülkelerinin Yapay Zeka Performanslarının Analizi: LOPCOW tabanlı MARCOS Yöntemi ile Bir Uygulama

Year 2024, Volume: 9 Issue: Issue: 2, 99 - 121
https://doi.org/10.53070/bbd.1537792

Abstract

Büyük ekonomilerin yapay zeka hazırlık performansları, küresel ekonomi üzerinde önemli bir etkiye sahip olabilir. Bu nedenle, bu ekonomilerin yapay zeka hazırlık performanslarının analizi büyük önem taşımaktadır. Bu çalışmada, G7 ülkelerinin yapay zeka hazırlık performansları, 2023 yılına ait en güncel Hükümet Yapay Zeka Hazırlık Endeksi (YZHE) verileri kullanılarak değerlendirilmiştir. Analiz, GAIRI bileşenlerinin öneminin ülkelere göre farklılık gösterdiğini, Veri ve Altyapı bileşenlerinin genellikle en önemli bileşenler olduğunu ortaya koymuştur. Ülkeler, yapay zeka hazırlık performanslarına göre LOPCOW tabanlı MARCOS yöntemi kullanılarak şu şekilde sıralanmıştır: ABD, Birleşik Krallık, Kanada, Fransa, Japonya, Almanya ve İtalya. Özellikle İtalya'nın yapay zeka hazırlık performansının ortalamanın altında olduğu belirlenmiş olup, küresel ekonomiye katkısını artırmak için iyileştirilmesi gerektiğini göstermektedir. Uygulanan yöntem, duyarlılık analizinde hassas, karşılaştırmalı analizde güvenilir ve simülasyon analizinde sağlam ve istikrarlı olduğunu kanıtlamıştır.

References

  • Abdulla, A., Baryannis, G., & Badi, I. (2023). An integrated machine learning and MARCOS method for supplier evaluation and selection. Decision Analytics Journal, 9, 1-11. doi: 10.1016/j.dajour.2023.100342
  • Adigwe, C. S., Olaniyi, O. O., Olabanji, S. O., Okunleye, O. J., Mayeke, N. R., & Ajayi, S. A. (2024). Asian Journal of Economics, Business and Accounting. Forecasting the Future: The Interplay of Artificial Intelligence, Innovation and Competitiveness and its Effect on the Global Economy, 24(4), 126-146. doi: 10.9734/AJEBA/2024/v24i41269
  • Aghion, P., Jones, B. F., & Jones, C. I. (2019). Artificial intelligence and economic growth. In: A. Agrawal, J. Gans, & A. Goldfarb (Ed.). The economics of artificial intelligence: An agenda (p. 237–290). doi:10.7208/chicago/9780226613475.003.0009). Chicago: University of Chicago Press.
  • Allen, G. C., & Thadani, A. (2023). Advancing cooperative AI governance at the 2023 G7 summit. Washington: Center for Strategic and International Studies.
  • AlSedrah, M. K. (2017). ARTIFICIAL intelligence. Kuwait: The American University of the Middle East.
  • Atal, A. K. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin, Learning outcomes of classroom research (p. 459-463). Madurai: L Ordine Nuovo Publication.
  • Badi, I., Pamucar, D., Stevic, Ž., & Muhammad, L. J. (2023). Wind farm site selection using BWM-AHP-MARCOS method: A case study of Libya. Scientific African, 19, 1-13. doi: 10.1016/j.sciaf.2022.e01511.
  • Barai, V. (2021). Artificial intelligence. In J. Karthikeyan, S. T. Hie, & N. Y. Jin, Learning outcomes of classroom research (p. 431-437). Madurai: L Ordine Nuovo Publication.
  • Bates, M. J. (2023). AI 101: An introduction to artificial intelligence:Unlocking the power and potential of AI for today's world . Independently published.
  • Bektaş, S. (2022). Türk sigorta sektörünün 2002-2021 dönemi için MEREC, LOPCOW, COCOSO, EDAS ÇKKV yöntemleri ile performansının değerlendirilmesi. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 16(2), 247-283. doi: 10.46520/bddkdergisi.1178359
  • Binh, V., Tuyen, V., Thanh, D. V., Duong, V., Dung, N. T., & Thao, L. P. (2024). Application of MARCOS method for determining best process factor for EDM using graphite electrodes. Journal of Harbin Engineering University, 45(2), 324-334.
  • Biswas, S., & Joshi, N. (2023). A performance based ranking of initial public offerings (IPOs) in India. Jgournal of Decision Analytics and Intelligent Computing, 3(1), 15-32. doi: 10.31181/10023022023b
  • Biswas, S., Bandyopadhyay, G., & Mukhopadhyaya, J. N. (2022). A multi-criteria based analytic framework for exploring the impact of Covid-19 on firm performance in emerging market. Decision Analytics Journal, 5, 1-26. doi: 10.1016/j.dajour.2022.100143
  • Biswas, S., Datta, D., & Kar, S. (2023). Energy efficiency and environmental sustainability: A multi criteria based comparison of BRICS and G7 countries. In S. Sarkar, S. Gupta, & A. K. Shaw, Emerging technology and management trends in environment and sustainability (p. 107-124). Oxfordshire: Routledge.
  • Cazzaniga, M., Jaumotte, F., Li, L., Melina, G., Panton, A. J., Pizzinelli, C., . Tavares, M. M. (2024). Gen-AI: Artificial intelligence and the future of work. Washington: International Monetary Fund.
  • Cheng, R., Fan, J., Wu, M., & Seiti, H. (2024). A large-scale multi-attribute group decision-making method with R-numbers and its application to hydrogen fuel cell logistics path selection. Complex & Intelligent Systems, 10, 5213–5260. doi: 10.1007/s40747-024-01437-9
  • Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelligence on innovation. NBER Working Paper Series(24449), 1-40.
  • Coole, M., Evans, D., & Medbury, J. (2021). Artificial intelligence and security technologies adoption guidance document. Virginia: ASIS FOUNDATION.
  • Dampitakse, K., Kungvantip, V., Jermsittiparsert, K., & Chienwattanasook, K. (2021). The impact of economic growth, financial development, financial performance and capital growth on the adoption of artificial intelligence in the Asean countries. Journal of Management Information and Decision Sciences, 24(4), 1-14.
  • Das, A., Chaudhuri, T., Roy, S. S., Biswas, S., & Guha, B. (2023). Selection of appropriate portfolio optimization strategy. Theoretical and Applied Computational Intelligence, 1(1), 58-81. doi: 10.31181/taci1120237
  • Demir, G., Chatterjee, P., Kadry, S., Abdelhadi, A., & Pamučar, D. (2024). Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) Method: A Comprehensive Bibliometric Analysis. Decision Making: Applications in Management and Engineering, 7(2), 313-336. doi: 10.31181/dmame7220241137
  • Dhruva, S., Krishankumar, R., Zavadskas, E. K., Ravichandran, K. S., & Gandomi, A. H. (2024). Selection of suitable cloud vendors for health centre: A personalized decision framework with fermatean fuzzy set, LOPCOW, and CoCoSo. INFORMATICA, 35(1), 65–98. doi: 10.15388/23-INFOR537
  • Dinh, V. T., Tran, H. D., Tran, Q. H., Vu, D. B., Vu, D., Vu, N. P., & Nguyen, T.-T. (2024). Multi-Objective optimization of a two-stage helical gearbox using MARCOS method. Designs, 8, 1-17. doi: 10.3390/designs8030053
  • Du, J. (2024). The Impact of Artificial Intelligence Adoption on employee unemployment: A multifaceted relationship. International Journal of Social Sciences and Public Administration, 2(3), 321-327. doi: 10.62051/ijsspa.v2n3.45
  • Dua, T. (2024). PSI-SAW and PSI-MARCOS Hybrid MCDM Methods. Engineering, Technology & Applied Science Research, 14(4), 15963-15968. doi: 10.48084/etasr.7992
  • Ecer, F. (2020). Çok kriterli karar verme. Ankara: Seçkin Yayıncılık.
  • Ecer, F., & Pamucar, D. (2022). A novel LOPCOW-DOBI multi-criteris sustainability performance assessmwnt methodology: an application in developing country banking sector. Omega, 1-35. doi: 10.1016/j.omega.2022.102690.
  • Ecer, F., Murat, T., Dinçer, H., & Yüksel, S. (2024). A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: A case study of Türkiye. Financial Innovation, 10(31), 1-29. doi: 10.1186/s40854-023-00543-w
  • Ecer, F., Ögel, İ. Y., Krishankumar, R., & Tirkolaee, E. B. (2023). The q rung fuzzy LOPCOW VIKOR model to assess the role of unmanned aerial vehicles for precision agriculturerealization in the Agri Food 4.0 era. Artificial Intelligence Review, 56, 13373–13406. doi: 10.1007/s10462-023-10476-6
  • El-Araby, A., Sabry, I., & El-Assal, A. (2024). Ranking Performance of MARCOS Method for Location Selection Problem in the Presence of Conflicting Criteria. Decision Making Advances, 2(1), 148-162. doi: 10.31181/dma21202435
  • Erdoğan, B., & Aydın, Y. (2023). Performance analysis of insurance companies traded on BIST: MARCOS method. Turkish Research Journal of Academic Social Science, 6(2), 225-232. doi: 10.59372/turajas.1394285
  • Ferreira, P., Teixeira, J. G., & Teixeira, L. F. (2020). Understanding the impact of artificial intelligence on services. In H. Nóvoa, M. Drăgoicea, & N. Kühl (Ed.), Exploring service science-IESS 2020-lecture notes in business information processing (p. 202–213). doi: 10.1007/978-3-030-38724-2_15). Springer.
  • Garg, S., Haralayya, B., Qudah, M. A., Maguluri, L. P., András , S., & Sameen, A. Z. (2024). The Impact of Artificial Intelligence on Management Productivity and Efficiency. Business, Management and Economics Engineering, 22(1), 424-434.
  • Ghosh, R. (2021). Artificial intelligence (AI). In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 201-208). Madurai: L Ordine Nuovo Publication.
  • Gigovic, L., Pamucar, D., Bajic, Z., & Milicevic, M. (2019). The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots. Sustainability, 8, 1-30.
  • Gure, N. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 348-354). Madurai: L Ordine Nuovo Publication.
  • Hadad, S. H., Subhan, Setiawansyah, Arshad, M. W., Yudhistira, A., & Rahmanto, Y. (2024). Combination of logarithmic percentage change-driven objective weighting and multi-attributive ideal-real comparative analysis in determining the best production employees. Jurnal Teknik Informatika (JUTIF), 5(3), 843-853. DOI: 10.52436/1.jutif.2024.5.3.2057
  • Hankins, E., Nettel, P. F., Martinescu, L., Grau, G., & Rahim, S. (2023). Goverment artifical ıntellingence readiness ındex (2023). Frederiksberg: Oxford Insight.
  • Haugeland, J. (1985). Artificial intelligence: The very idea. MIT Press: Massachusetts.
  • Hu, G., & Yu, B. (2022). Artificial intelligence and applications. Journal of Artificial Intelligence and Technology, 2, 39-41.
  • Jackson, P. C. (1985). Introduction to artifical intelligence. New York: Dover Publications.
  • Johns, A. (2021). Journey towards a synthetic consciousness. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 56-64). Madurai: L Ordine Nuovo Publication.
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13, 1-20.
  • Kim, S.-K., & Huh, J.-H. (2020). Consistency of medical data using intelligent neuron faster R-CNN algorithm for smart health care application. Healthcare, 8, 1-26. doi: 10.3390/healthcare8020185
  • Krausová, A. (2017). Intersections between law and artificial intelligence. International Journal of Computer (IJC), 27(1), 55-68.
  • Kulkov, I., Kulkova, J., Rohrbeck, R., Menvielle, L., Kaartemo, V., & Makkonen, H. (2023). Artificial intelligence-driven sustainable development:Examining organizational, technical, and processing approaches to achieving global goals. Sustainable Development, 1-15. doi: 10.1002/sd.2773
  • Kumar, S., Bhaumik, S., Patnaik, L., Maity, S. R., & Paleu, V. (2022). Application of Integrated BWM Fuzzy-MARCOS approach for coating material selection in tooling industries. Materials, 15, 1-29. doi: 10.3390/ma15249002
  • Li, Z., Xing, Y., & Dong, P. (2024). A novel q rung orthopair fuzzy best worst method, Shannon entropy and MARCOS method for mobile medical app service quality evaluation. Applied Soft Computing, 155, 1-15. doi: 10.1016/j.asoc.2024.1114171
  • Liu, T., Gao, K., & Rong, Y. (2024). An integrated picture fuzzy operational competitiveness ratings group decision approach for evaluating the enterprise digital transformation. Granul. Comput., 9(32), 15-29. doi: 10.1007/s41066-024-00451-z
  • Lucci, S., & Kopec, D. (2016). Artificial intelligence in the 21st century. New York: David Pallai.
  • Lukic, R. (2022). Application of MARCOS method in evaluation of efficiency of trade companies in Serbia. Economic Outlook, 24(1), 1-14. doi: 10.5937/ep24-38921
  • Lukić, R. (2023). Research of the economic positioning of the Western Balkan countries using the LOPCOW and EDAS methods. JOURNAL OF ENGINEERING MANAGEMENT AND COMPETITIVENESS (JEMC), 13(2), 106-116. doi: 10.5937/JEMC2302106L
  • Lukić, R. (2024). Research on the dynamics of the performance positioning of the trade in Serbia using the LOPCOW and EDAS methods. Applied Research in Administrative Sciences, 5(1), 31-40. doi: 10.24818/ARAS/2024/5/1.03
  • Luo, X. (2023). Artificial intelligence and corporate innovation: Intelligent transformation and development trends under technological empowerment. In J. Cifuentes-Faura, C. T. Dang, & X. Li (Ed.), Proceedings of the 2nd International Conference on Business and Policy Studies (p. 201-207). doi: 10.54254/2754-1169/45/20230285). New York: Springer.
  • Mastilo, Z., Štilić, A., Gligović, D., & Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. Journal of Central Banking Theory and Practice, 1, p. 167-197. doi: 10.2478/jcbtp-2024-0008.
  • Meriçelli, M., & İncetaş, M. O. (2023). Artificial intelligence & sports. In I. Bayraktar (Ed.), The use of developing technology in sports (p. 13-28). doi: 10.58830/ozgur.pub315.c1477). Gaziantep: Özgür Publications.
  • Miklif, H. Z., Dadoosh, A. A., & Neamah, Z. H. (2021). The role of artificial intelligence in stimulating economic growth. Journal of Global Scientific Research, 6(8), 1602-1617.
  • Nahar, S. (2024). Modeling the effects of artificial intelligence (AI)-based innovation on sustainable development goals (SDGs): Applying a system dynamics perspective in a cross-country setting. Technological Forecasting & Social Change, 201, 1-27. doi: org/10.1016/j.techfore.2023.123203
  • Naveenkumar, K. H. (2021). Artificial intelligence. InJ. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning Outcomes of Classroom Research (p. 82-90). Madurai: L Ordine Nuovo Publication.
  • OECD. (2023). G7 Hiroshima process on artificial intelligence (AI). Paris: OECDPublisching.
  • Oliveira, R. C., & Silva, R. D. (2023). Artificial intelligence in agriculture: Benefits, challenges and trends. Appl. Sci., 13, 1-17. doi: 10.3390/app13137405.
  • Pavaloiu, A. (2016). The impact of artificial intelligence on global trends. Journal of Multidisciplinary Developments, 1(1), 21-37.
  • Piton, C. (2023). The economic consequences of artificial intelligence : An overview. NBB Economic Review(1), 2-28.
  • Prasad, P. H. (2021). Aspects of artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 453-458). Madurai: L Ordine Nuovo Publication.
  • Putra, A. D., Arshad, M. W., Setiawansyah, & Sintaro, S. (2024). Decision Support System for Best Honorary Teacher Performance Assessment Using a Combination of LOPCOW and MARCOS. Journal of Computer System and Informatics (JoSYC), 5(3), 578-590. doi: 10.47065/josyc.v5i3.5127
  • Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8(11), 1-14.
  • Rajesh, T. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 28-36). Madurai: L Ordine Nuovo Publication.
  • Ritanya, J. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 219-228). Madurai: L Ordine Nuovo Publication.
  • Rogerson, A., Hankins, E., Nettel, P. F., & Rahim, S. (2022). Goverment Artifical Intellingence Readiness Index (2022). Frederiksberg: Oxford Insights.
  • Rong, Y., Yu, L., Liu, Y., Simic , V., & Garg, H. (2023). The FMEA model based on LOPCOW ARAS methods with interval valued Fermatean fuzzy information for risk assessment of R&D projects in industrial robot offline programming systems. Computational and Applied Analysis, 43, 1-43. doi: 10.1007/s40314-023-02532-2
  • Saba, C. S., & Monkam, N. (2024). Leveraging the potential of artificial intelligence (AI) in exploring the interplay among tax revenue, institutional quality, and economic growth in the G 7 countries. AI & SOCIETY, 1-23. doi:10.1007/s00146-024-01885-4
  • Salas-Pilco, S. Z. (2021). Comparison of national artificial intelligence (AI): Strategic policies and priorities. In T. Keskin , & R. D. Kiggins (Ed.), Towards an international political economy of artificial intelligence, international political economy series (p. 195-216). doi: 10.1007/978-3-030-74420-5_9). New York: Palgrave Macmillan.
  • Samuel, D. M. (2021). Artificial intelligence. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning Outcomes Of Classroom Research (p. 100-107). Madurai: L Ordine Nuovo Publication.
  • Sanyal, A., Biswas, S., & Sur, S. (tarih yok). An Integrated Full Consistent LOPCOW-EDAS Framework For Modelling Consumer Decision Making for Organic Food Selection. Yugoslav Journal of Operations Research, [S.l.], 1-38. doi: 10.2298/YJOR240315022S
  • Sauerbrei, A. (2023). The impact of artificial intelligence on the person centred, doctor patient relationship: some problems and solutions. BMC Medical Informatics and Decision Making, 23(73), 1-14. doi: 10.1186/s12911-023-02162-y
  • Seal, D. (2021). Assignment on English communication. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 278-283). Madurai: L Ordine Nuovo Publication.
  • Sharma, K. (2021). Why artificial intelligence stands out? In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (p. 161-170). Madurai: L Ordine Nuovo Publication.
  • Sheikh, H., Prins, C., & Schrijvers , E. (2023). Artificial intelligence: Definition and background. In H. Sheikh, C. Prins, & E. Schrijvers (Ed.), Mission AI-The New System Technology (p. 15-41. doi:10.1007/978-3-031-21448-6_2). New York: Springer, Cham.
  • Shen, Y., & Yu, F. (2021). The influence of artificial intelligence on art design in the digital age. Hindawi Scientific Programming, 1-10. doi: 10.1155/2021/4838957
  • Singh, T., Gehlen, G. d., Singh, V., Ferreira, N. F., de Barros, L. Y., Lasch, G., . . . Neis, P. D. (2024). Selection of automotive brake friction composites reinforced by agro-waste and natural fiber: An integrated multi-criteria decision-making approach. Results in Engineering, 1-42. doi: 10.1016/j.rineng.2024.102030
  • Solos, W. K., & Leonard, J. (2022). On the impact of artificial intelligence on economy. AI & Economy, 41(1), 551-560. doi: 10.15354/si.22.re066
  • Sulicha, A., Sołoducho-Pelc, L., & Grzesiaka, S. (2023). Artificial Intelligence and sustainable development in business management context–bibliometric review. Procedia Computer Science, 225, 3727–3735. doi: 10.1016/j.procs.2023.10.368
  • Szołtysek, J., & Stęchły, J. (2023). The relationship of artificial intelligence and education – opportunities and threats for the parties of the educational process in the urban context. figshare. doi: 10.6084/m9.figshare.23264621.v1
  • Tejaswi, L. (2021). Artificial intelligence and humanity artificial. In J. Karthikeyan, T. S. Hie, & N. Y. Jin (Ed.), Learning outcomes of classroom research (pp. 209-218). Madurai: L Ordine Nuovo Publication.
  • Thamik, H., & Wu, J. (2022). The impact of artificial intelligence on sustainable development in electronic markets. Sustainability, 14, 1-20. doi: 10.3390/su14063568
  • Ulutaş, A., Balo, F., & Topal, A. (2023). Identifying the most efficient natural fibre for common commercial building insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT model. Polymers, 15, 1-23. doi: 10.3390/polym15061500
  • Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI MACONT model. Expert Systems with Applications, 241(1), 1-35. doi: 10.1016/j.eswa.2023.122680
  • Union, T. I. (2018). Assessing the economic impact of artificial intelligence. Geneva: ITU.
  • Wang, Y., Wang, W., Wang, Z., Deveci, M., Roy, S. K., & Kadry, S. (2024). Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method. Information Sciences(664), 1-22. doi: 10.1016/j.ins.2024.120326
  • Warwick, K. (2012). Artificial Intelligence. New York: Routledge.
  • Xue, Y., Fang, C., & Dong, Y. (2021). The impact of new relationship learning on artificial intelligence technology innovation. International Journal of Innovation Studies, 5, 2-8. doi: 10.1016/j.ijis.2020.11.001.
  • Yoganandham, G., & Elanchezhian, G. (2023). Artificial intelligence and economic growth with reference to decision-making, social governance, accelerate industry 4.0, and foster innovation -A theoretical assessment. Science, Technology and Development, 13(8), 224-236.
  • Zhao, H., & Guo, S. (2024). Urban integrated energy system construction plan selection: A hybrid multi-criteria decision-making framework. Environ. Dev. Sustain., 1-13. doi: 10.1007/s10668-024-04491-y
  • Zia, M. T., Nadim, M., Khan, M. A., Akram, N., & Atta, F. (2024). The Role and Impact of Artificial Intelligence on Project Management. The Asian Bulletin of Big Data Management, 4(2), 178-185. doi: 10.62019/abbdm.v4i02.160
There are 94 citations in total.

Details

Primary Language English
Subjects Planning and Decision Making
Journal Section PAPERS
Authors

Furkan Fahri Altıntaş 0000-0002-0161-5862

Early Pub Date December 24, 2024
Publication Date
Submission Date August 23, 2024
Acceptance Date September 9, 2024
Published in Issue Year 2024 Volume: 9 Issue: Issue: 2

Cite

APA Altıntaş, F. F. (2024). Analysis of Artificial Intelligence Readiness Performances of G7 Countries: An Application with LOPCOW-based MARCOS Method. Computer Science, 9(Issue: 2), 99-121. https://doi.org/10.53070/bbd.1537792

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper