Research Article
BibTex RIS Cite

EfficientNet Tabanlı Bir Yöntem Kullanılarak Böbrek Taşı Tespiti

Year 2025, Volume: 10 Issue: 1, 1 - 10, 01.06.2025

Abstract

Bu çalışma, böbrek taşlarının doğru ve etkili teşhisi ve sınıflandırılması için derin öğrenme metodolojilerinin uygulanmasını araştırmaktadır. Çevresel ve genetik faktörlerin karmaşık etkileşimi sonucu oluşan böbrek taşları, yaşam kalitesini düşürerek ve çeşitli komplikasyon riskini artırarak insan sağlığını önemli ölçüde etkilemektedir. Manyetik rezonans görüntüleme (MRG) ve bilgisayarlı tomografi (BT) gibi görüntüleme teknikleri tanı için çok önemli olsa da, BT taramaları hastalar için radyasyon riskleri oluşturmaktadır. Bu riskleri azaltmak ve teşhis doğruluğunu artırmak için, bu araştırma derin öğrenme algoritmalarının potansiyelini araştırmaktadır. Çalışma, derin öğrenmenin gücünden yararlanarak, doğrudan BT görüntülerinden farklı böbrek taşı tiplerini doğru bir şekilde tanımlayabilen ve sınıflandırabilen sağlam bir sistem geliştirmeyi amaçlamaktadır. Bu yaklaşım, tekrarlanan BT taramalarına olan ihtiyacı en aza indirme potansiyeline sahiptir, böylece hastanın radyasyona maruz kalmasını azaltırken aynı anda teşhis hassasiyetini artırır ve potansiyel olarak daha etkili ve kişiselleştirilmiş tedavi stratejilerine yol açar.

References

  • Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation, arXiv preprint arXiv:1802.06955.
  • Asif S, Zheng X, Zhu Y. (2024) An optimized fusion of deep learning models for kidney stone detection from CT images, Journal of King Saud University - Computer and Information Sciences, 36(7), 102130.
  • Badrinarayanan V, Kendall A, Cipolla R. (2017) SEGNet: a deep convolutional Encoder-Decoder architecture for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.
  • Basiri A, Taheri M, Taheri F. (2012) What is the state of the stone analysis techniques in urolithiasis? DOAJ (DOAJ: Directory of Open Access Journals), 9(2), 445–454. Caglayan A, Horsanali MO, Kocadurdu K, Ismailoglu E, Guneyli S. (2022) Deep learning model-assisted detection of kidney stones on computed tomography, International Braz J Urol, 48(5), 830–839.
  • Castañeda-Argáiz R, Cloutier J, Villa L, Traxer O. (2016) Evolution of endourology and flexible ureterorenoscopy, can they be useful to urologists to clarify stone composition and morphology? Comptes Rendus Chimie, 19(11–12), 1590–1596.
  • Chang Y, Lin C, Chien Y. (2024) Predicting the risk of chronic kidney disease based on uric acid concentration in stones using biosensors integrated with a deep learning-based ANN system, Talanta, 283, 127077.
  • Chen L, Zhu Y, Papandreou G, Schroff F, Adam H. (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, In Lecture notes in computer science, pp. 833–851.
  • Cheungpasitporn W, Mao M, O’Corragain O, Edmonds P, Erickson S, Thongprayoon C. (2014) The risk of coronary heart disease in patients with kidney stones: A systematic review and meta-analysis, N. Am. J. Med. Sci., 6, 580–585.
  • Cui Y, Sun Z, Ma S, Liu W, Wang X, Zhang X, Wang X. (2020) Automatic detection and scoring of kidney stones on noncontrast CT images using S.T.O.N.E. nephrolithometry: combined deep learning and thresholding methods, Molecular Imaging and Biology, 23(3), 436–445.
  • Daudon M, Jungers P. (2012) Stone Composition and Morphology: A Window on Etiology. Springer London, pp. 113–140
  • Dharaneswar S, Kumar BPS. (2025) Elucidating the novel framework of liver tumour segmentation and classification using improved Optimization-assisted EfficientNet B7 learning model, Biomedical Signal Processing and Control, 100, Part B, 107045.
  • Ding H, Huang Q, Razmjooy N. (2025) An improved version of firebug swarm optimization algorithm for optimizing Alex/ELM network kidney stone detection, Biomedical Signal Processing and Control, 99, 106898.
  • Fitri LA, Haryanto F, Arimura H, YunHao C, Ninomiya K, Nakano R et al. (2020) Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network. Phys Med 78:201–208.
  • Hatamizadeh A, Tang Y, Nath V, Tang D. (2022) Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3d medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3–8 January 2022, pp. 574–584.
  • Imamura Y, Kawamura K, Sazuka T, Sakamoto S, Imamoto T, Nihei N, Suzuki H, Okano T, Nozumi K, Ichikawa T. (2012) Development of a nomogram for predicting the stone‐free rate after transurethral ureterolithotripsy using semi‐rigid ureteroscope. International Journal of Urology, 20(6), 616–621.
  • Jendeberg J, Thunberg P, Lidén M. (2021) Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network. Urolithiasis 49(1):41–49.
  • Kawahara T, Miyamoto H, Ito H, Terao H, Kakizoe M, Kato Y, Ishiguro H, Uemura H, Yao M, Matsuzaki J. (2016) Predicting the mineral composition of ureteral stone using non-contrast computed tomography, Urolithiasis 44, 231–239.
  • Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. (2017) Kidney stones. Nat Rev Dis Primers., 3(1): 1, 16008– 23.
  • Liu H, Ghadimi N. (2024) Hybrid convolutional neural network and Flexible Dwarf Mongoose Optimization Algorithm for strong kidney stone diagnosis, Biomedical Signal Processing and Control, 91, 106024.
  • Liu J, Wang S, Turkbey EB, Linguraru MG, Yao J, Summers RM. (2014) Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features, Med Phys. 2014; 42: 144-153.
  • Mahadevan Vishy, 'Anatomy of the abdomen', in William E. G. Thomas, Malcolm W. R. Reed, and Michael G. Wyatt (eds), Oxford Textbook of Fundamentals of Surgery, Oxford Textbooks in Surgery (Oxford, 2016; online edn, Oxford Academic, 1 July 2016)
  • Manoj B, Mohan N, Kumar SS, Soman KP. (2022) Automated Detection of Kidney Stone Using Deep Learning Models. 2022 2nd International Conference on Intelligent Technologies (CONIT) (2022): 1-5.
  • McCarthy CJ, Baliyan V, Kordbacheh H, Sajjad Z, Sahani D, Kambadakone A. (2016) Radiology of renal stone disease, International Journal of Surgery 36, 638–646.
  • Ozbay E, Ozbay FA, Gharehchopogh FS. (2024) Kidney Tumor Classification on CT images using Self-supervised Learning, Computers in Biology and Medicine, 176, 108554.
  • Parakh A, Lee H, Lee JH, Eisner BH, Sahani DV, Do S. (2019) Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization, Radiol Artif Intell., 1:e180066.
  • Rao, NP, Preminger, GM, Kavanagh JP (Eds). Urinary tract stone disease. 2011th ed. London, England: Springer London; 2011.
  • Rijthoven Ri M, Swiderska-Chadaj Z, Seeliger K, Laak J.v.d., Ciompi F. (2018) You Only Look on Lymphocytes Once, Medical Imaging with Deep Learning, pp. 1-15.
  • Romero V, Akpinar H, Assimos DG. (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol., 12(2–3):e86.
  • Rule, A.D.; Bergstralh, E.J.; Melton, L.J., III; Li, X.; Weaver, A.L.; Lieske, J.C. (2009). Kidney stones and the risk for chronic kidney disease. Clin. J. Am. Soc. Nephrol., 4, 804–811.
  • Rule AD, Krambeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol. 2011 Aug;6(8):2069-75. doi: 10.2215/CJN.10651110. Epub 2011 Jul 22. PMID: 21784825; PMCID: PMC315643.
  • Serrat J, Lumbreras F, Blanco F, Valiente M, López-Mesas M. (2017). mystone: A system for automatic kidney stone classification. Expert Systems with Applications 89, 41 – 51.
  • Seyfi G, Yilmaz M, Esme E, Kiran MS. (2024) X-ray image analysis for explosive circuit detection using deep learning algorithms, Applied Soft Computing, 151, 111133.
  • Shabaniyan T, Parsaei H, Aminsharifi A, Movahedi MM, Jahromi AT, Pouyesh S, et al. (2019) An artificial intelligence-based clinical decision support system for large kidney stone treatment. Australasian physical & engineering sciences in medicine., 42:771-9.
  • Shen D, Wu G, Suk, HI. (2017) Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19, 221–248.
  • Shorfuzzaman M, Hossain MS. (2021) MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients. Pattern recognition 113, 107700.
  • Silva SFR, Matos DC, Silva SAL, Daher EDF, Campos HdH., Silva C.A.B.d. (2010) Chemical and morphological analysis of kidney stones: a double-blind comparative study, Acta Cirurgica Brasileira 25, 444 – 448.
  • Suzuki K, Zhou L, Wang Q. (2017) Machine learning in medical imaging. Pattern Recognit., 63:465–7.
  • Tan M, Le QV. (2019) EfficientNet: Rethinking model scaling for convolutional neural networks, arXiv:1905.11946.
  • Taylor EN, Feskanich D, Paik JM, Curhan GC. (2015) Nephrolithiasis and risk of incident bone fracture. The Journal of Urology, 195(5), 1482–1486.
  • Tecklenborg J, Clayton D, Siebert S, Coley SM. (2018) The role of the immune system in kidney disease, Clin Exp Immunol. 2018 May;192(2):142-150. doi: 10.1111/cei.13119. Epub 2018 Mar 24. PMID: 29453850; PMCID: PMC5904695.
  • Torrell-Amado A, Serrat-Gual J. (2018) Metric learning for kidney stone classification, Universitat Autònoma de Barcelona. Escola d’Enginyeria
  • Wade CI, Streitz MJ. Anatomy, Abdomen and Pelvis: Abdomen. [Updated 2022 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
  • Wu Y, Yi Z (2020) Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks. Knowl Based Syst 200:105873.
  • Yan C, Razmjooy N. (2023) Kidney stone detection using an optimized Deep Believe network by fractional coronavirus herd immunity optimizer, Biomedical Signal Processing and Control, 86, Part A, 104951.
  • Zhang Z, Liu Q, Wang Y. (2018) Road extraction by deep residual u-net. IEEE Geosci., Remote Sens. Lett., 15, 749–753.

Kidney Stone Detection Using an EfficientNet-Based Method

Year 2025, Volume: 10 Issue: 1, 1 - 10, 01.06.2025

Abstract

This study investigates the application of deep learning methodologies for the accurate and efficient diagnosis and classification of kidney stones. Kidney stones, resulting from a complex interplay of environmental and genetic factors, significantly impact human health by reducing quality of life and increasing the risk of various complications. While imaging techniques like magnetic resonance imaging (MRI) and computed tomography (CT) are crucial for diagnosis, CT scans pose radiation risks to patients. To mitigate these risks and improve diagnostic accuracy, this research explores the potential of deep learning algorithms. By leveraging the power of deep learning, the study aims to develop a robust system that can accurately identify and classify different types of kidney stones directly from CT images. This approach has the potential to minimize the need for repeated CT scans, thereby reducing patient exposure to radiation while simultaneously enhancing diagnostic precision and potentially leading to more effective and personalized treatment strategies.

References

  • Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation, arXiv preprint arXiv:1802.06955.
  • Asif S, Zheng X, Zhu Y. (2024) An optimized fusion of deep learning models for kidney stone detection from CT images, Journal of King Saud University - Computer and Information Sciences, 36(7), 102130.
  • Badrinarayanan V, Kendall A, Cipolla R. (2017) SEGNet: a deep convolutional Encoder-Decoder architecture for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.
  • Basiri A, Taheri M, Taheri F. (2012) What is the state of the stone analysis techniques in urolithiasis? DOAJ (DOAJ: Directory of Open Access Journals), 9(2), 445–454. Caglayan A, Horsanali MO, Kocadurdu K, Ismailoglu E, Guneyli S. (2022) Deep learning model-assisted detection of kidney stones on computed tomography, International Braz J Urol, 48(5), 830–839.
  • Castañeda-Argáiz R, Cloutier J, Villa L, Traxer O. (2016) Evolution of endourology and flexible ureterorenoscopy, can they be useful to urologists to clarify stone composition and morphology? Comptes Rendus Chimie, 19(11–12), 1590–1596.
  • Chang Y, Lin C, Chien Y. (2024) Predicting the risk of chronic kidney disease based on uric acid concentration in stones using biosensors integrated with a deep learning-based ANN system, Talanta, 283, 127077.
  • Chen L, Zhu Y, Papandreou G, Schroff F, Adam H. (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, In Lecture notes in computer science, pp. 833–851.
  • Cheungpasitporn W, Mao M, O’Corragain O, Edmonds P, Erickson S, Thongprayoon C. (2014) The risk of coronary heart disease in patients with kidney stones: A systematic review and meta-analysis, N. Am. J. Med. Sci., 6, 580–585.
  • Cui Y, Sun Z, Ma S, Liu W, Wang X, Zhang X, Wang X. (2020) Automatic detection and scoring of kidney stones on noncontrast CT images using S.T.O.N.E. nephrolithometry: combined deep learning and thresholding methods, Molecular Imaging and Biology, 23(3), 436–445.
  • Daudon M, Jungers P. (2012) Stone Composition and Morphology: A Window on Etiology. Springer London, pp. 113–140
  • Dharaneswar S, Kumar BPS. (2025) Elucidating the novel framework of liver tumour segmentation and classification using improved Optimization-assisted EfficientNet B7 learning model, Biomedical Signal Processing and Control, 100, Part B, 107045.
  • Ding H, Huang Q, Razmjooy N. (2025) An improved version of firebug swarm optimization algorithm for optimizing Alex/ELM network kidney stone detection, Biomedical Signal Processing and Control, 99, 106898.
  • Fitri LA, Haryanto F, Arimura H, YunHao C, Ninomiya K, Nakano R et al. (2020) Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network. Phys Med 78:201–208.
  • Hatamizadeh A, Tang Y, Nath V, Tang D. (2022) Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3d medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3–8 January 2022, pp. 574–584.
  • Imamura Y, Kawamura K, Sazuka T, Sakamoto S, Imamoto T, Nihei N, Suzuki H, Okano T, Nozumi K, Ichikawa T. (2012) Development of a nomogram for predicting the stone‐free rate after transurethral ureterolithotripsy using semi‐rigid ureteroscope. International Journal of Urology, 20(6), 616–621.
  • Jendeberg J, Thunberg P, Lidén M. (2021) Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network. Urolithiasis 49(1):41–49.
  • Kawahara T, Miyamoto H, Ito H, Terao H, Kakizoe M, Kato Y, Ishiguro H, Uemura H, Yao M, Matsuzaki J. (2016) Predicting the mineral composition of ureteral stone using non-contrast computed tomography, Urolithiasis 44, 231–239.
  • Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. (2017) Kidney stones. Nat Rev Dis Primers., 3(1): 1, 16008– 23.
  • Liu H, Ghadimi N. (2024) Hybrid convolutional neural network and Flexible Dwarf Mongoose Optimization Algorithm for strong kidney stone diagnosis, Biomedical Signal Processing and Control, 91, 106024.
  • Liu J, Wang S, Turkbey EB, Linguraru MG, Yao J, Summers RM. (2014) Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features, Med Phys. 2014; 42: 144-153.
  • Mahadevan Vishy, 'Anatomy of the abdomen', in William E. G. Thomas, Malcolm W. R. Reed, and Michael G. Wyatt (eds), Oxford Textbook of Fundamentals of Surgery, Oxford Textbooks in Surgery (Oxford, 2016; online edn, Oxford Academic, 1 July 2016)
  • Manoj B, Mohan N, Kumar SS, Soman KP. (2022) Automated Detection of Kidney Stone Using Deep Learning Models. 2022 2nd International Conference on Intelligent Technologies (CONIT) (2022): 1-5.
  • McCarthy CJ, Baliyan V, Kordbacheh H, Sajjad Z, Sahani D, Kambadakone A. (2016) Radiology of renal stone disease, International Journal of Surgery 36, 638–646.
  • Ozbay E, Ozbay FA, Gharehchopogh FS. (2024) Kidney Tumor Classification on CT images using Self-supervised Learning, Computers in Biology and Medicine, 176, 108554.
  • Parakh A, Lee H, Lee JH, Eisner BH, Sahani DV, Do S. (2019) Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization, Radiol Artif Intell., 1:e180066.
  • Rao, NP, Preminger, GM, Kavanagh JP (Eds). Urinary tract stone disease. 2011th ed. London, England: Springer London; 2011.
  • Rijthoven Ri M, Swiderska-Chadaj Z, Seeliger K, Laak J.v.d., Ciompi F. (2018) You Only Look on Lymphocytes Once, Medical Imaging with Deep Learning, pp. 1-15.
  • Romero V, Akpinar H, Assimos DG. (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol., 12(2–3):e86.
  • Rule, A.D.; Bergstralh, E.J.; Melton, L.J., III; Li, X.; Weaver, A.L.; Lieske, J.C. (2009). Kidney stones and the risk for chronic kidney disease. Clin. J. Am. Soc. Nephrol., 4, 804–811.
  • Rule AD, Krambeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol. 2011 Aug;6(8):2069-75. doi: 10.2215/CJN.10651110. Epub 2011 Jul 22. PMID: 21784825; PMCID: PMC315643.
  • Serrat J, Lumbreras F, Blanco F, Valiente M, López-Mesas M. (2017). mystone: A system for automatic kidney stone classification. Expert Systems with Applications 89, 41 – 51.
  • Seyfi G, Yilmaz M, Esme E, Kiran MS. (2024) X-ray image analysis for explosive circuit detection using deep learning algorithms, Applied Soft Computing, 151, 111133.
  • Shabaniyan T, Parsaei H, Aminsharifi A, Movahedi MM, Jahromi AT, Pouyesh S, et al. (2019) An artificial intelligence-based clinical decision support system for large kidney stone treatment. Australasian physical & engineering sciences in medicine., 42:771-9.
  • Shen D, Wu G, Suk, HI. (2017) Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19, 221–248.
  • Shorfuzzaman M, Hossain MS. (2021) MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients. Pattern recognition 113, 107700.
  • Silva SFR, Matos DC, Silva SAL, Daher EDF, Campos HdH., Silva C.A.B.d. (2010) Chemical and morphological analysis of kidney stones: a double-blind comparative study, Acta Cirurgica Brasileira 25, 444 – 448.
  • Suzuki K, Zhou L, Wang Q. (2017) Machine learning in medical imaging. Pattern Recognit., 63:465–7.
  • Tan M, Le QV. (2019) EfficientNet: Rethinking model scaling for convolutional neural networks, arXiv:1905.11946.
  • Taylor EN, Feskanich D, Paik JM, Curhan GC. (2015) Nephrolithiasis and risk of incident bone fracture. The Journal of Urology, 195(5), 1482–1486.
  • Tecklenborg J, Clayton D, Siebert S, Coley SM. (2018) The role of the immune system in kidney disease, Clin Exp Immunol. 2018 May;192(2):142-150. doi: 10.1111/cei.13119. Epub 2018 Mar 24. PMID: 29453850; PMCID: PMC5904695.
  • Torrell-Amado A, Serrat-Gual J. (2018) Metric learning for kidney stone classification, Universitat Autònoma de Barcelona. Escola d’Enginyeria
  • Wade CI, Streitz MJ. Anatomy, Abdomen and Pelvis: Abdomen. [Updated 2022 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
  • Wu Y, Yi Z (2020) Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks. Knowl Based Syst 200:105873.
  • Yan C, Razmjooy N. (2023) Kidney stone detection using an optimized Deep Believe network by fractional coronavirus herd immunity optimizer, Biomedical Signal Processing and Control, 86, Part A, 104951.
  • Zhang Z, Liu Q, Wang Y. (2018) Road extraction by deep residual u-net. IEEE Geosci., Remote Sens. Lett., 15, 749–753.
There are 45 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section PAPERS
Authors

Sercan Yalçın 0000-0003-1420-2490

Publication Date June 1, 2025
Submission Date January 20, 2025
Acceptance Date February 26, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Yalçın, S. (2025). Kidney Stone Detection Using an EfficientNet-Based Method. Computer Science, 10(1), 1-10. https://doi.org/10.53070/bbd.1623346

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper