Research Article
BibTex RIS Cite

Öneri Sistemlerinde Güncel Eğilimler: Yaklaşımlar ve Gelecek Yönelimler Üzerine Bir Araştırma

Year 2025, Volume: 10 Issue: 1, 53 - 91, 01.06.2025

Abstract

Bu makale, dijital ortamlarda kullanıcı deneyimini ve bilgi erişimini geliştirmede tavsiye sistemlerinin artan önemini tartışmaktadır. Veri seyrekliği, soğuk başlangıç sorunu ve ölçeklenebilirlik gibi zorlukları tanımlayarak gelişmiş makine öğrenimi tekniklerine duyulan ihtiyacı vurgulamaktadır. İşbirlikçi filtreleme, içerik tabanlı filtreleme ve hibrit yaklaşımlar dahil olmak üzere çeşitli metodolojiler incelenmektedir. Veri seyrekliği ve karmaşık veri ilişkilerini ele almak için grafik tabanlı işbirlikçi filtreleme, grafik sinir ağları ve derin öğrenme gibi yenilikler vurgulanmaktadır. Çalışmada ayrıca soğuk başlangıç sorununu çözmek ve değişen kullanıcı tercihlerine uyum sağlamak için dikkat mekanizmaları ve sıralı modelleme üzerinde durulmaktadır. Kullanıcı güveni ve şeffaflık oluşturmak için açıklanabilir yapay zekanın önemi vurgulanmaktadır. İleriye dönük olarak, makale, kişiselleştirme ve alaka düzeyini artırmak için alanlar arası öneri modellerinde ve çeşitli veri kaynaklarının entegrasyonunda ilerlemeler öngörmektedir. Genel olarak, zorlukların üstesinden gelmek ve dijital platformlarda kullanıcı memnuniyetini artırmak için sofistike metodolojileri savunmakta ve tavsiye teknolojilerinin geleceğinde inovasyonun rolünün altını çizmektedir.

References

  • Abdollahpouri, H. (2019). Popularity Bias in Ranking and Recommendation. 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 529–530). Honolulu, HI, USA: ACM.
  • Amer-Yahia, S., Lakshmanan, L., Vassilvitski, S., & Yu, C. (2009). attling Predictability and Overconcentration in Recommender Systems. IEEE Data Engineering Bulletin, 32, 33-40.
  • Bae, H. K., Kim, H. O., Shin, W. Y., & Kim, S. W. (2021). “How to get consensus with neighbors?”: Rating standardization for accurate collaborative filtering. Knowledge-Based Systems, 234.
  • Basilico, J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. 21st International Conference on Machine Learning. Banff, Alberta, Canada: ACM.
  • Bauer, J., & Jannach, D. (2024). Hybrid session-aware recommendation with feature-based models. User Modeling and User-Adapted Interaction, 34, 691–728.
  • Bennett, J., & Lanning, S. (2007). The Netflix Prize. KDD.
  • Bertin-Mahieux, T., Ellis, D. P., Whitman, B., & Lamere, P. (2011). The Million Song Dataset. ISMIR.
  • Burke, R., Felfernig, A., & Göker, M. H. (2011). Recommender Systems: An Overview. Ai Magazine, 32(3), 13-18.
  • Cano, E., & Morisio, M. (2017). Hybrid recommender systems: A systematic literature review. Intelligent Data Analysis, 21(6), 1487-1524.
  • Celma, O. (2010). Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play. Springer.
  • Chalyi, S., & Leshchynskyi, V. O. (2020). Temporal Modeling of User Preferences in Recommender System. 9th International Conference on Information Control Systems & Technologies, (pp. 518-528).
  • Channarong, C., Paosirikul, C., Maneeroj, S., & Takasu, A. (2022). HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT. IEEE Access, 10, 56193-56206.
  • Chen, H., Xin, X., Wang, D., & Ding, Y. (2021). Decomposed Collaborative Filtering: Modeling Explicit and Implicit Factors For Recommender Systems. 14th ACM International Conference on Web Search and Data Mining (pp. 958–966). Israel: ACM.
  • Chen, J. Y., Hsu, P. Y., Cheng, M. S., Lei, H. T., Huang, S. H., Ko., Y. H., & Huang, C. W. (2018). Investigating Deciding Factors of Product Recommendation in Social Media. Advances in Swarm Intelligence: Lecture Notes in Computer Science. 10942, pp. 249–257. Springer.
  • Chen, Y., & Huang, J. (2024). Effective Content Recommendation in New Media: Leveraging Algorithmic Approaches. IEEE Access, 12, 90561-90570.
  • Choi, J., Jeon, J., & Park, N. (2021). LT-OCF: Learnable-Time ODE-based Collaborative Filtering. 30th ACM International Conference on Information & Knowledge Management (pp. 251–260). Queensland, Australia: ACM.
  • da Costa, A. F., Manzato, M. G., & Campello, R. J. (2019). Boosting collaborative filtering with an ensemble of co-trained recommenders. Expert Systems with Applications, 115, 427-441.
  • Dacrema, M. F., Gasparin, A., & Cremonesi, P. (2018). Deriving item features relevance from collaborative domain knowledge. Knowledge-aware and Conversational Recommender Systems (KaRS) Workshop. Vancouver, Canada: CEUR-WS.
  • Dai, J., Li, Q., Nong, T., Bi, Q., & Chu, H. (2024). Joint contrastive learning of structural and semantic for graph collaborative filtering. Neurocomputing, 586.
  • Dong, B., Zhu, Y., Li, L., & Wu, X. (2020). Hybrid Collaborative Recommendation via Dual-Autoencoder. IEEE Access, 8, 46030-46040.
  • Dong, D., Zheng, X., Zhang, R., & Wang, Y. (2018). Recurrent Collaborative Filtering for Unifying General and Sequential Recommender. 27th International Joint Conference on Artificial Intelligence, (pp. 3350-3356).
  • Duong, T. N., Vuong, T. A., Nguyen, D. M., & Dang, Q. H. (2020). Utilizing an Autoencoder-Generated Item Representation in Hybrid Recommendation System. IEEE Access, 8, 75094-75104.
  • Fakhfakh, R., Ben Ammar, A., & Ben Amar, C. (2017). Deep Learning-Based Recommendation: Current Issues and Challenges. International Journal of Advanced Computer Science and Applications, 8(12).
  • Fan, W., Ma, Y., Yin, D., Wang, J., Tang, J., & Li, Q. (2019). Deep social collaborative filtering. 13th ACM Conference on Recommender Systems (pp. 305-313). Copenhagen, Denmark: ACM.
  • Fengou, M. A., Athanasiou, G., Mantas, G., Griva, I., & Lymberopoulos, D. (2013). Towards Personalized Services in the Healthcare Domain. In B. Furht, & A. Agarwal, Handbook of Medical and Healthcare Technologies (pp. 417–433). New York: Springer.
  • Frolov, E., & Oseledets, I. (2019). HybridSVD: when collaborative information is not enough. 13th ACM Conference on Recommender Systems (pp. 331–339). Copenhagen, Denmark: ACM.
  • Gaiger, K., Barkan, O., Tsipory-Samuel, S., & Koenigstein, N. (2023). Not All Memories Created Equal: Dynamic User Representations for Collaborative Filtering. IEEE Access, 11, 34746-34763.
  • Gatti, I., Diaz-Pace, J. A., & Schiaffino, S. (2023). A hybrid approach for artwork recommendation. Engineering Applications of Artificial Intelligence.
  • Goncalves, J. M., Gomes, D., & Aguiar, R. L. (2015). Privacy in Data Publishing for Tailored Recommendation Scenarios. Transactions on Data Privacy, 8(3), 245-271.
  • Gong, K., Song, X., Li, W., & Wang, S. (2024). HN-GCCF: High-order neighbor-enhanced graph convolutional collaborative filtering. Knowledge-Based Systems, 283.
  • Gulla, J. A., Zhang, L., Liu, P., Özgöbek, Ö., & Su, X. (2017). The Adressa Dataset for News Recommendation. ICIIM.
  • Gupta, M. K., Rao, C. R., Bhavsingh, M., & Srilakshmi, M. (2023). A Comparative Analysis of Collaborative Filtering Similarity Measurements for Recommendation Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 184–192.
  • Hansen, C., Hansen, C., Simonsen, J. G., Alstrup, S., & Lioma, C. (2020). Content-aware Neural Hashing for Cold-start Recommendation. 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 971–980). China: ACM.
  • Harper, F. M., & Konstan, J. A. (2015). The MovieLens Datasets: History and Context. ACM TiiS.
  • He, R., & McAuley, J. (2016). VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback. AAAI.
  • Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). “Evaluating collaborative filtering recommender systems.”
  • Hu, G. (2019). Personalized Neural Embeddings for Collaborative Filtering with Text. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 1, pp. 2082–2088. Minneapolis, Minnesota, USA: Association for Computational Linguistics.
  • Hu, G., Zhang, Y., & Yang, Q. (2019). Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text. WWW '19: The World Wide Web Conference (pp. 2822–2829). San Francisco, CA, USA: ACM.
  • Hu, Z., Nakagawa, S., Cai, S. M., Ren, F., & Deng, J. (2024). Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences. Information Systems, 124.
  • Huang, Z., Jin, B., Zhao, H., Liu, Q., Lian, D., Tengfei, B., & Chen, E. (2023). Personal or General? A Hybrid Strategy with Multi-factors for News Recommendation. ACM Transactions on Information Systems, 41(2), 1-29.
  • Huang, Z., Yu, C., Ni, J., Liu, H., Zeng, C., & Tang, Y. (2019). An Efficient Hybrid Recommendation Model With Deep Neural Networks. IEEE Access, 7, 137900-137912.
  • Huang, Z., Zeng, D. D., & Chen, H. (2007). A Comparison of Collaborative-Filtering Recommendation Algorithms for E-commerce. IEEE Intelligent Systems, 22, 68-78.
  • Ibrahim, M., Bajwa, I. S., Sarwar, N., Hajjej, F., & Sakr, H. A. (2023). An Intelligent Hybrid Neural Collaborative Filtering Approach for True Recommendations. IEEE Access, 11, 64831-64849.
  • Jain, A., Nagar, S., Singh, P. K., & Dhar, J. (2020). EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems. Expert Systems with Applications, 161.
  • Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Hybrid recommendation approaches. D. Jannach, M. Zanker, A. Felfernig, & G. Friedrich içinde, Recommender Systems: An Introduction (s. 124-142). Cambridge University Press.
  • Järvelin, K., & Kekäläinen, J. (2002). “Cumulated gain-based evaluation of IR techniques.”
  • Ji, D., Xiang, Z., & Li, Y. (2020). Dual Relations Network for Collaborative Filtering. IEEE Access, 8, 109747-109757.
  • Joorabloo, N., Jalili, M., & Ren, Y. (2020). Improved Collaborative Filtering Recommendation Through Similarity Prediction. IEEE Access, 8, 202122-202132.
  • Kim, K. J., & Ahn, H. (2011). Collaborative Filtering with a User-Item Matrix Reduction Technique. International Journal of Electronic Commerce, 16(2), 107–128.
  • Kumar, B., Sharma, N., Sharma, B., Herencsar, N., & Srivastava, G. (2023). Hybrid Recommendation Network Model with a Synthesis of Social Matrix Factorization and Link Probability Functions. Sensors, 23(5).
  • Kunde, S., Mishra, M., Pandit, A., Singhal, R., Nambiar, M. K., Shroff, G., & Gupta, S. (2020). Recommending in changing times. 14th ACM Conference on Recommender Systems (pp. 714–719). Brazil: ACM.
  • Li, A., Liu, X., & Yang, B. (n.d.). Item Attribute-aware Graph Collaborative Filtering Author links open overlay panel. Expert Systems with Applications, 238.
  • Li, W., Chen, H., Zhao, R., & Hu, C. (2021). A Federated Recommendation System Based on Local Differential Privacy Clustering. IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (pp. 364-369). IEEE.
  • Li, Q., Han, Z., & Wu, X. (2018). Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI Conference on Artificial Intelligence.
  • Li, X., Zhang, M., Wu, S., Liu, Z., Wang, L., & Yu, P. S. (2020). Dynamic Graph Collaborative Filtering. IEEE International Conference on Data Mining (ICDM) (pp. 322-331). Sorrento, Italy: IEEE.
  • Liang, G., Junhao, W., & Zhou, W. (2022). Individual Diversity Preference Aware Neural Collaborative Filtering. Knowledge-Based Systems, 258.
  • Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems With Applications, 41(4), 2065-2073.
  • Liu, X., Jiyong, Z., & Chenggang, Y. (2020). Towards context-aware collaborative filtering by learning context-aware latent representations. Knowledge-Based Systems, 199.
  • Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender System Application Developments: A Survey. Decision Support Systems, 74, 12-32.
  • Müllner, P., Lex, E., Schedl, M., & Kowald, D. (2023). Differential privacy in collaborative filtering recommender systems: a review. Frontiers in Big Data, 6.
  • Ma, W., Pan, W., & Ming, Z. (2022). SCF: Structured collaborative filtering with heterogeneous implicit feedback. Knowledge-Based Systems, 258.
  • McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: Understanding rating dimensions with review text. RecSys.
  • McAuley, J., Targett, C., Shi, Q., & van den Hengel, A. (2015). Image-based recommendations on styles and substitutes. SIGIR.
  • Magron, P., & Févotte, C. (2022). Neural content-aware collaborative filtering for cold-start music recommendation. Data Mining and Knowledge Discovery, 36, 1971–2005.
  • Mahesh, T. R., Kumar, V. V., & Lim, S. J. (2023). UsCoTc: Improved Collaborative Filtering (CFL) recommendation methodology using user confidence, time context with impact factors for performance enhancement. PLOS ONE, 18(3).
  • Mazeh, I., & Shmueli, E. (2020). A personal data store approach for recommender systems. Expert Systems With Applications, 139.
  • Nath, R. K., & Ahmad, T. (2022). Content Based Recommender System: Methodologies, Performance, Evaluation and Application. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (s. 423-428). Greater Noida, India: IEEE.
  • Nikolakopoulos, A. N., & Karypis, G. (2020). Boosting Item-based Collaborative Filtering via Nearly Uncoupled Random Walks. ACM Transactions on Knowledge Discovery from Data, 14(6), 1-26.
  • Ortal, P., & Edahiro, M. (2020). Switching Hybrid Method Based on User Similarity and Global Statistics for Collaborative Filtering. IEEE Access, 8, 213401-213415.
  • Pazzani, M. J., & Billsus, D. (2007). Content-Based Recommendation Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl, The Adaptive Web: Lecture Notes in Computer Science (pp. 325-341). Springer.
  • Perez-Alcazar, J. J., Calderon-Benavides, M. L., & Gonzalez-Caro, C. N. (2003). Towards an information filtering system in the Web integrating collaborative and content based techniques,”. First Latin American Web Congress (pp. 222-225). Santiago, Chile: IEEE.
  • Pirasteh, P., Jung, J. J., & Hwang, D. (2014). Item-Based Collaborative Filtering with Attribute Correlation: A Case Study on Movie Recommendation. N. T. Nguyen, B. Attachoo, B. Trawinski, & K. Somboonviwat içinde, Intelligent Information and Database Systems: Lecture Notes in Computer Science. Springer.
  • Polatidis, N., & Georgiadis, C. K. (2013). Recommender systems: The Importance of personalization in E-business environments. International Journal of E-Entrepreneurship and Innovation (IJEEI), 4(4), 32-46.
  • Puspitaningrum, D. (2019). Social Influences in Recommendation Systems. 7th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-6). Jakarta, Indonesia: IEEE.
  • Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, 175-186. https://doi.org/10.1145/192844.192905
  • Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56–58.
  • Ludewig, M., Mauro, N., Latifi, S., & Jannach, D. (2018). Evaluation of Session-based Recommendation Algorithms. RecSys.
  • Saleh, B., & Elgammal, A. (2015). Large-scale classification of fine-art paintings: Learning the right metric on the right feature. International Journal for Computer Vision.
  • Sammut, C., & Webb, G. I. (2010). “Encyclopedia of Machine Learning.”
  • Sarne, G. M. (2015). A novel hybrid approach improving effectiveness of recommender systems. Journal of Intelligent Information Systems, 44, 397–414.
  • Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. 10th International Conference on World Wide Web (pp. 285–295). Hong Kong: ACM.
  • Sejwal, V. K., & Abulaish, M. (2020). A hybrid recommendation technique using topic embedding for rating prediction and to handle cold-start problem. Expert Systems with Applications, 209.
  • Seng, D., Chen, G., & Zhang, Q. (2020). Item-based collaborative memory networks for recommendation. IEEE Access, 8, 213027-213037.
  • Shams, B., & Haratizadeh, S. (2018). Item-based collaborative ranking. Knowledge-Based Systems, 152.
  • Sharma, M., & Mann, S. (2013). A survey of recommender systems: approaches and limitations. International journal of innovations in engineering and technology, 2(2), 8-14.
  • Sharma, R., Gopalani, D., & Meena, Y. (2017). Collaborative filtering-based recommender system: Approaches and research challenges. 3rd International Conference on Computational Intelligence & Communication Technology (CICT) (s. 1-6). Ghaziabad, India: IEEE.
  • Sharma, S., Rana, V., & Malhotra, M. (2022). Automatic recommendation system based on hybrid filtering algorithm. Education and Information Technologies, 27, 1523–1538.
  • Singh, R. K., Mishra, M., & Singhal, R. (2023). Scalable High-Performance Architecture for Evolving Recommender System. 3rd Workshop on Machine Learning and Systems (pp. 154–162). Rome, Italy: ACM.
  • Sivaramakrishnan, N., Subramaniyaswamy, V., Viloria, A., Vijayakumar, V., & Senthilselvan, N. (2021). A deep learning-based hybrid model for recommendation generation and ranking. Neural Computing and Applications, 33, 10719-10736.
  • Song, D., Li, Z., Jiang, M., Qin, L., & Liao, L. (2019). A novel temporal and topic-aware recommender model. World Wide Web, 22, 2105–2127.
  • Tanuma, I., & Matsui, T. (2022). Variational Autoencoder-Based Hybrid Recommendation with Poisson Factorization for Modeling Implicit Feedback. IEEE Access, 10, 60696-60706.
  • Van Meteren, R., & Van Someren, M. (tarih yok). Using content-based filtering for recommendation. The machine learning in the new information age: MLnet/ECML2000 workshop, (s. 47-56).
  • Verma, V., & Aggarwal, R. (2020). Neighborhood-based Collaborative Recommendations: An Introduction. In P. Johri, K. V. Jitendra, & P. Sudip, Applications of Machine Learning (pp. 91-110). Singapore: Springer.
  • Voorhees, E. M. (1999). “The TREC-8 question answering track report.”
  • Walker, J., Zhou, F., Baagyere, E. Y., Ahene, E., & Zhang, F. (2022). Implicit optimal variational collaborative filtering. Complex & Intelligent Systems, 8, 4369–4384.
  • Wan, X., Rubens, N., Okamoto, T., & Feng, Y. (2015). Content Filtering Based on Keyword Map. 2015 International Conference on Electrical, Computer Engineering and Electronics (pp. 851-856). Atlantis Press.
  • Wang, C., Blei, D. M., & Fei-Fei, L. (2011). Collaborative topic modeling for recommending scientific articles. KDD.
  • Wang, C. D., Chen, Y. H., Xi, W. D., Huang, L., & Xie, G. (2022). Cross-domain explicit–implicit-mixed collaborative filtering neural network. IEEE Transactions on Systems, Man, and Cybernetics, 52, 6983-6997.
  • Wang, Q., Yin, H., Wang, H., Nguyen, Q. V., Huang, Z., & Lizhen, C. (2019). Enhancing Collaborative Filtering with Generative Augmentation. 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 548-556). Anchorage, AK, USA: ACM.
  • Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019). Neural Graph Collaborative Filtering. 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (s. 165–174). Paris, France: ACM.
  • Wang, X., Meng, S., Chen, Y., Liu, Q., Yuan, R., & Li, Q. (2022). Federated Deep Recommendation System Based on Multi-View Feature Embedding. 9th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1-9). Shenzhen, China: IEEE.
  • Wang, X., Wang, R., Shi, C., Song, G., & Li, Q. (2020). Multi-Component Graph Convolutional Collaborative Filtering. Proceedings of the AAAI Conference on Artificial Intelligence, 34(4), 6267-6274.
  • Wang, Y., Han, L., Qian, Q., Xia, J., & Li, J. (2022). Personalized Recommendation via Multi-dimensional Meta-paths Temporal Graph Probabilistic Spreading. Information Processing & Management, 59(1).
  • Wang, Z., Tan, Y., & Zhang, M. (2010). Graph-Based Recommendation on Social Networks. 12th International Asia-Pacific Web Conference (s. 116-122). Busan, South Korea: IEEE.
  • Wayne, X. Z., Li, S., He, Y., Wang, L., Wen, J. R., & Li, X. (2016). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49, 61–89.
  • Wu, L., Li, S., Hsieh, C. J., & Sharpnack, J. (2020). SSE-PT: Sequential Recommendation Via Personalized Transformer. 14th ACM Conference on Recommender Systems (pp. 328–337). Brazil: ACM.
  • Wu, L., Xia, Y., Min, S., & Xia, Z. (2024). Deep Attentive Interest Collaborative Filtering for Recommender Systems. IEEE Transactions on Emerging Topics in Computing, 12(2), 467-481.
  • Wu, Y., Wei, J., Yin, J., Liu, X., & Zhang, J. (2020). Deep Collaborative Filtering Based on Outer Product. IEEE Access, 8, 85567-85574.
  • Xin, X., He, X., Zhang, Y., Zhang, Y., & Jose, J. (2019). Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation. 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 125–134). Paris, France: ACM.
  • Xue, F., He, X., Wang, X., Xu, J., Kai, L., & Hong, R. (2019). Deep Item-based Collaborative Filtering for Top-N Recommendation. ACM Transactions on Information Systems, 37(3), 1-25.
  • Yanes, N., Ayman, M. M., Ezz, M. M., & Almuayqil, S. N. (2020). A Machine Learning-Based Recommender System for Improving Students Learning Experiences. IEEE Access, 8, 201218-201235.
  • Ying, H., Zhuang, F., Zhang, F., Liu, Y., Xu, G., Xie, X., . . . Wu, J. (2018). Sequential Recommender System based on Hierarchical Attention Networks. 27th International Joint Conference on Artificial Intelligence (pp. 3926-3932). Stockholm, Sweden: AAAI Press.
  • Yun, S. Y., & Youn, S. D. (2010). Recommender system based on user information. 7th International Conference on Service Systems and Service Management (s. 1-3). Tokyo, Japan: IEEE.
  • Zeng, Z., Lin, J., Li, L., Pan, W., & Ming, Z. (2019). Next-Item Recommendation via Collaborative Filtering with Bidirectional Item Similarity. ACM Transactions on Information Systems, 38(1), 1-22.
  • Zhang, B., & Sundar, S. S. (2019). Proactive vs. reactive personalization: Can customization of privacy enhance user experience? International Journal of Human-Computer Studies, 128, 86-99.
  • Zhang, H., Wong, R. K., & Chu, V. W. (2021). Hybrid Variational Autoencoder for Recommender Systems. ACM Transactions on Knowledge Discovery from Data, 16(2).
  • Zhang, L., Wang, P., Li, J., Xiao, Z., & Shi, H. (2021). Attentive hybrid recurrent neural networks for sequential recommendation. Neural Computing and Applications, 33, 11091-11105.
  • Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7, 439–457.
  • Zhang, R., Qidong, L., Chun, G., Wei, J. X., & Huiyi, M. (2014). Collaborative Filtering for Recommender Systems. Second International Conference on Advanced Cloud and Big Data (CBD), (s. 301-308).
  • Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). “Deep learning-based recommender system: A survey and new perspectives.”
  • Zhao, Q., Zhang, H., Xia, H., & McAuley, J. (2019). Learning user representations from sequential behavior for recommendation. WSDM.
  • Zhao, L., Zhang, L., Chenyi, L., Chen, X., Gao, J., & Gao, J. (2020). Attention with Long-Term Interval-Based Deep Sequential Learning for Recommendation. Complexity.
  • Zhao, W. X., Li, S., He, Y., Wang, L., Wen, J. R., & Li, X. (2016). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49, 61–89.
  • Zheng, J., Chen, S., Du, Y., & Song, P. (2022). A multiview graph collaborative filtering by incorporating homogeneous and heterogeneous signals. Information Processing & Management, 59(6).
  • Zhou, W., Du, Y., Duan, M., Ul Haq, A., & Shah, F. (2022). NtCF: Neural Trust-Aware Collaborative Filtering Toward Hierarchical Recommendation Services. Arabian Journal for Science and Engineering, 47, 1239–1252.
  • Zhu, T., Liu, G., & Chen, G. (2020). Social Collaborative Mutual Learning for Item Recommendation. ACM Transactions on Knowledge Discovery from Data, 14(4), 1-19.
  • Zhu, Y., & Chen, Z. (2021). Variational Bandwidth Auto-Encoder for Hybrid Recommender Systems. IEEE Transactions on Knowledge and Data Engineering, 35(5), 5371-5385.
  • Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving recommendation lists through topic diversification. WWW.
  • Zou, L., Xia, L., Gu, Y., Zhao, X., Liu, W., Huang, J. X., & Yin, D. (2020). Neural Interactive Collaborative Filtering. 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 749–758). China: ACM.

Current Trends in Recommender Systems: A Survey of Approaches and Future Directions

Year 2025, Volume: 10 Issue: 1, 53 - 91, 01.06.2025

Abstract

This paper discusses the growing importance of recommender systems in enhancing user experience and information access in digital environments. It identifies challenges such as data sparsity, the cold-start problem, and scalability, emphasizing the need for advanced machine learning techniques. Various methodologies are explored, including collaborative filtering, content-based filtering, and hybrid approaches. Innovations like graph-based collaborative filtering, graph neural networks, and deep learning are highlighted for addressing data sparsity and complex data relationships. The paper also emphasizes attention mechanisms and sequential modeling to resolve the cold-start problem and adapt to changing user preferences. It stresses the significance of explainable AI for building user trust and transparency. Looking ahead, the paper anticipates advancements in cross-domain recommendation models and the integration of diverse data sources to enhance personalization and relevance. Overall, it advocates for sophisticated methodologies to overcome challenges and improve user satisfaction in digital platforms, underscoring the role of innovation in the future of recommendation technologies

References

  • Abdollahpouri, H. (2019). Popularity Bias in Ranking and Recommendation. 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 529–530). Honolulu, HI, USA: ACM.
  • Amer-Yahia, S., Lakshmanan, L., Vassilvitski, S., & Yu, C. (2009). attling Predictability and Overconcentration in Recommender Systems. IEEE Data Engineering Bulletin, 32, 33-40.
  • Bae, H. K., Kim, H. O., Shin, W. Y., & Kim, S. W. (2021). “How to get consensus with neighbors?”: Rating standardization for accurate collaborative filtering. Knowledge-Based Systems, 234.
  • Basilico, J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. 21st International Conference on Machine Learning. Banff, Alberta, Canada: ACM.
  • Bauer, J., & Jannach, D. (2024). Hybrid session-aware recommendation with feature-based models. User Modeling and User-Adapted Interaction, 34, 691–728.
  • Bennett, J., & Lanning, S. (2007). The Netflix Prize. KDD.
  • Bertin-Mahieux, T., Ellis, D. P., Whitman, B., & Lamere, P. (2011). The Million Song Dataset. ISMIR.
  • Burke, R., Felfernig, A., & Göker, M. H. (2011). Recommender Systems: An Overview. Ai Magazine, 32(3), 13-18.
  • Cano, E., & Morisio, M. (2017). Hybrid recommender systems: A systematic literature review. Intelligent Data Analysis, 21(6), 1487-1524.
  • Celma, O. (2010). Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play. Springer.
  • Chalyi, S., & Leshchynskyi, V. O. (2020). Temporal Modeling of User Preferences in Recommender System. 9th International Conference on Information Control Systems & Technologies, (pp. 518-528).
  • Channarong, C., Paosirikul, C., Maneeroj, S., & Takasu, A. (2022). HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT. IEEE Access, 10, 56193-56206.
  • Chen, H., Xin, X., Wang, D., & Ding, Y. (2021). Decomposed Collaborative Filtering: Modeling Explicit and Implicit Factors For Recommender Systems. 14th ACM International Conference on Web Search and Data Mining (pp. 958–966). Israel: ACM.
  • Chen, J. Y., Hsu, P. Y., Cheng, M. S., Lei, H. T., Huang, S. H., Ko., Y. H., & Huang, C. W. (2018). Investigating Deciding Factors of Product Recommendation in Social Media. Advances in Swarm Intelligence: Lecture Notes in Computer Science. 10942, pp. 249–257. Springer.
  • Chen, Y., & Huang, J. (2024). Effective Content Recommendation in New Media: Leveraging Algorithmic Approaches. IEEE Access, 12, 90561-90570.
  • Choi, J., Jeon, J., & Park, N. (2021). LT-OCF: Learnable-Time ODE-based Collaborative Filtering. 30th ACM International Conference on Information & Knowledge Management (pp. 251–260). Queensland, Australia: ACM.
  • da Costa, A. F., Manzato, M. G., & Campello, R. J. (2019). Boosting collaborative filtering with an ensemble of co-trained recommenders. Expert Systems with Applications, 115, 427-441.
  • Dacrema, M. F., Gasparin, A., & Cremonesi, P. (2018). Deriving item features relevance from collaborative domain knowledge. Knowledge-aware and Conversational Recommender Systems (KaRS) Workshop. Vancouver, Canada: CEUR-WS.
  • Dai, J., Li, Q., Nong, T., Bi, Q., & Chu, H. (2024). Joint contrastive learning of structural and semantic for graph collaborative filtering. Neurocomputing, 586.
  • Dong, B., Zhu, Y., Li, L., & Wu, X. (2020). Hybrid Collaborative Recommendation via Dual-Autoencoder. IEEE Access, 8, 46030-46040.
  • Dong, D., Zheng, X., Zhang, R., & Wang, Y. (2018). Recurrent Collaborative Filtering for Unifying General and Sequential Recommender. 27th International Joint Conference on Artificial Intelligence, (pp. 3350-3356).
  • Duong, T. N., Vuong, T. A., Nguyen, D. M., & Dang, Q. H. (2020). Utilizing an Autoencoder-Generated Item Representation in Hybrid Recommendation System. IEEE Access, 8, 75094-75104.
  • Fakhfakh, R., Ben Ammar, A., & Ben Amar, C. (2017). Deep Learning-Based Recommendation: Current Issues and Challenges. International Journal of Advanced Computer Science and Applications, 8(12).
  • Fan, W., Ma, Y., Yin, D., Wang, J., Tang, J., & Li, Q. (2019). Deep social collaborative filtering. 13th ACM Conference on Recommender Systems (pp. 305-313). Copenhagen, Denmark: ACM.
  • Fengou, M. A., Athanasiou, G., Mantas, G., Griva, I., & Lymberopoulos, D. (2013). Towards Personalized Services in the Healthcare Domain. In B. Furht, & A. Agarwal, Handbook of Medical and Healthcare Technologies (pp. 417–433). New York: Springer.
  • Frolov, E., & Oseledets, I. (2019). HybridSVD: when collaborative information is not enough. 13th ACM Conference on Recommender Systems (pp. 331–339). Copenhagen, Denmark: ACM.
  • Gaiger, K., Barkan, O., Tsipory-Samuel, S., & Koenigstein, N. (2023). Not All Memories Created Equal: Dynamic User Representations for Collaborative Filtering. IEEE Access, 11, 34746-34763.
  • Gatti, I., Diaz-Pace, J. A., & Schiaffino, S. (2023). A hybrid approach for artwork recommendation. Engineering Applications of Artificial Intelligence.
  • Goncalves, J. M., Gomes, D., & Aguiar, R. L. (2015). Privacy in Data Publishing for Tailored Recommendation Scenarios. Transactions on Data Privacy, 8(3), 245-271.
  • Gong, K., Song, X., Li, W., & Wang, S. (2024). HN-GCCF: High-order neighbor-enhanced graph convolutional collaborative filtering. Knowledge-Based Systems, 283.
  • Gulla, J. A., Zhang, L., Liu, P., Özgöbek, Ö., & Su, X. (2017). The Adressa Dataset for News Recommendation. ICIIM.
  • Gupta, M. K., Rao, C. R., Bhavsingh, M., & Srilakshmi, M. (2023). A Comparative Analysis of Collaborative Filtering Similarity Measurements for Recommendation Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 184–192.
  • Hansen, C., Hansen, C., Simonsen, J. G., Alstrup, S., & Lioma, C. (2020). Content-aware Neural Hashing for Cold-start Recommendation. 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 971–980). China: ACM.
  • Harper, F. M., & Konstan, J. A. (2015). The MovieLens Datasets: History and Context. ACM TiiS.
  • He, R., & McAuley, J. (2016). VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback. AAAI.
  • Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). “Evaluating collaborative filtering recommender systems.”
  • Hu, G. (2019). Personalized Neural Embeddings for Collaborative Filtering with Text. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 1, pp. 2082–2088. Minneapolis, Minnesota, USA: Association for Computational Linguistics.
  • Hu, G., Zhang, Y., & Yang, Q. (2019). Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text. WWW '19: The World Wide Web Conference (pp. 2822–2829). San Francisco, CA, USA: ACM.
  • Hu, Z., Nakagawa, S., Cai, S. M., Ren, F., & Deng, J. (2024). Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences. Information Systems, 124.
  • Huang, Z., Jin, B., Zhao, H., Liu, Q., Lian, D., Tengfei, B., & Chen, E. (2023). Personal or General? A Hybrid Strategy with Multi-factors for News Recommendation. ACM Transactions on Information Systems, 41(2), 1-29.
  • Huang, Z., Yu, C., Ni, J., Liu, H., Zeng, C., & Tang, Y. (2019). An Efficient Hybrid Recommendation Model With Deep Neural Networks. IEEE Access, 7, 137900-137912.
  • Huang, Z., Zeng, D. D., & Chen, H. (2007). A Comparison of Collaborative-Filtering Recommendation Algorithms for E-commerce. IEEE Intelligent Systems, 22, 68-78.
  • Ibrahim, M., Bajwa, I. S., Sarwar, N., Hajjej, F., & Sakr, H. A. (2023). An Intelligent Hybrid Neural Collaborative Filtering Approach for True Recommendations. IEEE Access, 11, 64831-64849.
  • Jain, A., Nagar, S., Singh, P. K., & Dhar, J. (2020). EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems. Expert Systems with Applications, 161.
  • Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Hybrid recommendation approaches. D. Jannach, M. Zanker, A. Felfernig, & G. Friedrich içinde, Recommender Systems: An Introduction (s. 124-142). Cambridge University Press.
  • Järvelin, K., & Kekäläinen, J. (2002). “Cumulated gain-based evaluation of IR techniques.”
  • Ji, D., Xiang, Z., & Li, Y. (2020). Dual Relations Network for Collaborative Filtering. IEEE Access, 8, 109747-109757.
  • Joorabloo, N., Jalili, M., & Ren, Y. (2020). Improved Collaborative Filtering Recommendation Through Similarity Prediction. IEEE Access, 8, 202122-202132.
  • Kim, K. J., & Ahn, H. (2011). Collaborative Filtering with a User-Item Matrix Reduction Technique. International Journal of Electronic Commerce, 16(2), 107–128.
  • Kumar, B., Sharma, N., Sharma, B., Herencsar, N., & Srivastava, G. (2023). Hybrid Recommendation Network Model with a Synthesis of Social Matrix Factorization and Link Probability Functions. Sensors, 23(5).
  • Kunde, S., Mishra, M., Pandit, A., Singhal, R., Nambiar, M. K., Shroff, G., & Gupta, S. (2020). Recommending in changing times. 14th ACM Conference on Recommender Systems (pp. 714–719). Brazil: ACM.
  • Li, A., Liu, X., & Yang, B. (n.d.). Item Attribute-aware Graph Collaborative Filtering Author links open overlay panel. Expert Systems with Applications, 238.
  • Li, W., Chen, H., Zhao, R., & Hu, C. (2021). A Federated Recommendation System Based on Local Differential Privacy Clustering. IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (pp. 364-369). IEEE.
  • Li, Q., Han, Z., & Wu, X. (2018). Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI Conference on Artificial Intelligence.
  • Li, X., Zhang, M., Wu, S., Liu, Z., Wang, L., & Yu, P. S. (2020). Dynamic Graph Collaborative Filtering. IEEE International Conference on Data Mining (ICDM) (pp. 322-331). Sorrento, Italy: IEEE.
  • Liang, G., Junhao, W., & Zhou, W. (2022). Individual Diversity Preference Aware Neural Collaborative Filtering. Knowledge-Based Systems, 258.
  • Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems With Applications, 41(4), 2065-2073.
  • Liu, X., Jiyong, Z., & Chenggang, Y. (2020). Towards context-aware collaborative filtering by learning context-aware latent representations. Knowledge-Based Systems, 199.
  • Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender System Application Developments: A Survey. Decision Support Systems, 74, 12-32.
  • Müllner, P., Lex, E., Schedl, M., & Kowald, D. (2023). Differential privacy in collaborative filtering recommender systems: a review. Frontiers in Big Data, 6.
  • Ma, W., Pan, W., & Ming, Z. (2022). SCF: Structured collaborative filtering with heterogeneous implicit feedback. Knowledge-Based Systems, 258.
  • McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: Understanding rating dimensions with review text. RecSys.
  • McAuley, J., Targett, C., Shi, Q., & van den Hengel, A. (2015). Image-based recommendations on styles and substitutes. SIGIR.
  • Magron, P., & Févotte, C. (2022). Neural content-aware collaborative filtering for cold-start music recommendation. Data Mining and Knowledge Discovery, 36, 1971–2005.
  • Mahesh, T. R., Kumar, V. V., & Lim, S. J. (2023). UsCoTc: Improved Collaborative Filtering (CFL) recommendation methodology using user confidence, time context with impact factors for performance enhancement. PLOS ONE, 18(3).
  • Mazeh, I., & Shmueli, E. (2020). A personal data store approach for recommender systems. Expert Systems With Applications, 139.
  • Nath, R. K., & Ahmad, T. (2022). Content Based Recommender System: Methodologies, Performance, Evaluation and Application. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (s. 423-428). Greater Noida, India: IEEE.
  • Nikolakopoulos, A. N., & Karypis, G. (2020). Boosting Item-based Collaborative Filtering via Nearly Uncoupled Random Walks. ACM Transactions on Knowledge Discovery from Data, 14(6), 1-26.
  • Ortal, P., & Edahiro, M. (2020). Switching Hybrid Method Based on User Similarity and Global Statistics for Collaborative Filtering. IEEE Access, 8, 213401-213415.
  • Pazzani, M. J., & Billsus, D. (2007). Content-Based Recommendation Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl, The Adaptive Web: Lecture Notes in Computer Science (pp. 325-341). Springer.
  • Perez-Alcazar, J. J., Calderon-Benavides, M. L., & Gonzalez-Caro, C. N. (2003). Towards an information filtering system in the Web integrating collaborative and content based techniques,”. First Latin American Web Congress (pp. 222-225). Santiago, Chile: IEEE.
  • Pirasteh, P., Jung, J. J., & Hwang, D. (2014). Item-Based Collaborative Filtering with Attribute Correlation: A Case Study on Movie Recommendation. N. T. Nguyen, B. Attachoo, B. Trawinski, & K. Somboonviwat içinde, Intelligent Information and Database Systems: Lecture Notes in Computer Science. Springer.
  • Polatidis, N., & Georgiadis, C. K. (2013). Recommender systems: The Importance of personalization in E-business environments. International Journal of E-Entrepreneurship and Innovation (IJEEI), 4(4), 32-46.
  • Puspitaningrum, D. (2019). Social Influences in Recommendation Systems. 7th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-6). Jakarta, Indonesia: IEEE.
  • Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, 175-186. https://doi.org/10.1145/192844.192905
  • Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56–58.
  • Ludewig, M., Mauro, N., Latifi, S., & Jannach, D. (2018). Evaluation of Session-based Recommendation Algorithms. RecSys.
  • Saleh, B., & Elgammal, A. (2015). Large-scale classification of fine-art paintings: Learning the right metric on the right feature. International Journal for Computer Vision.
  • Sammut, C., & Webb, G. I. (2010). “Encyclopedia of Machine Learning.”
  • Sarne, G. M. (2015). A novel hybrid approach improving effectiveness of recommender systems. Journal of Intelligent Information Systems, 44, 397–414.
  • Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. 10th International Conference on World Wide Web (pp. 285–295). Hong Kong: ACM.
  • Sejwal, V. K., & Abulaish, M. (2020). A hybrid recommendation technique using topic embedding for rating prediction and to handle cold-start problem. Expert Systems with Applications, 209.
  • Seng, D., Chen, G., & Zhang, Q. (2020). Item-based collaborative memory networks for recommendation. IEEE Access, 8, 213027-213037.
  • Shams, B., & Haratizadeh, S. (2018). Item-based collaborative ranking. Knowledge-Based Systems, 152.
  • Sharma, M., & Mann, S. (2013). A survey of recommender systems: approaches and limitations. International journal of innovations in engineering and technology, 2(2), 8-14.
  • Sharma, R., Gopalani, D., & Meena, Y. (2017). Collaborative filtering-based recommender system: Approaches and research challenges. 3rd International Conference on Computational Intelligence & Communication Technology (CICT) (s. 1-6). Ghaziabad, India: IEEE.
  • Sharma, S., Rana, V., & Malhotra, M. (2022). Automatic recommendation system based on hybrid filtering algorithm. Education and Information Technologies, 27, 1523–1538.
  • Singh, R. K., Mishra, M., & Singhal, R. (2023). Scalable High-Performance Architecture for Evolving Recommender System. 3rd Workshop on Machine Learning and Systems (pp. 154–162). Rome, Italy: ACM.
  • Sivaramakrishnan, N., Subramaniyaswamy, V., Viloria, A., Vijayakumar, V., & Senthilselvan, N. (2021). A deep learning-based hybrid model for recommendation generation and ranking. Neural Computing and Applications, 33, 10719-10736.
  • Song, D., Li, Z., Jiang, M., Qin, L., & Liao, L. (2019). A novel temporal and topic-aware recommender model. World Wide Web, 22, 2105–2127.
  • Tanuma, I., & Matsui, T. (2022). Variational Autoencoder-Based Hybrid Recommendation with Poisson Factorization for Modeling Implicit Feedback. IEEE Access, 10, 60696-60706.
  • Van Meteren, R., & Van Someren, M. (tarih yok). Using content-based filtering for recommendation. The machine learning in the new information age: MLnet/ECML2000 workshop, (s. 47-56).
  • Verma, V., & Aggarwal, R. (2020). Neighborhood-based Collaborative Recommendations: An Introduction. In P. Johri, K. V. Jitendra, & P. Sudip, Applications of Machine Learning (pp. 91-110). Singapore: Springer.
  • Voorhees, E. M. (1999). “The TREC-8 question answering track report.”
  • Walker, J., Zhou, F., Baagyere, E. Y., Ahene, E., & Zhang, F. (2022). Implicit optimal variational collaborative filtering. Complex & Intelligent Systems, 8, 4369–4384.
  • Wan, X., Rubens, N., Okamoto, T., & Feng, Y. (2015). Content Filtering Based on Keyword Map. 2015 International Conference on Electrical, Computer Engineering and Electronics (pp. 851-856). Atlantis Press.
  • Wang, C., Blei, D. M., & Fei-Fei, L. (2011). Collaborative topic modeling for recommending scientific articles. KDD.
  • Wang, C. D., Chen, Y. H., Xi, W. D., Huang, L., & Xie, G. (2022). Cross-domain explicit–implicit-mixed collaborative filtering neural network. IEEE Transactions on Systems, Man, and Cybernetics, 52, 6983-6997.
  • Wang, Q., Yin, H., Wang, H., Nguyen, Q. V., Huang, Z., & Lizhen, C. (2019). Enhancing Collaborative Filtering with Generative Augmentation. 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 548-556). Anchorage, AK, USA: ACM.
  • Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019). Neural Graph Collaborative Filtering. 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (s. 165–174). Paris, France: ACM.
  • Wang, X., Meng, S., Chen, Y., Liu, Q., Yuan, R., & Li, Q. (2022). Federated Deep Recommendation System Based on Multi-View Feature Embedding. 9th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1-9). Shenzhen, China: IEEE.
  • Wang, X., Wang, R., Shi, C., Song, G., & Li, Q. (2020). Multi-Component Graph Convolutional Collaborative Filtering. Proceedings of the AAAI Conference on Artificial Intelligence, 34(4), 6267-6274.
  • Wang, Y., Han, L., Qian, Q., Xia, J., & Li, J. (2022). Personalized Recommendation via Multi-dimensional Meta-paths Temporal Graph Probabilistic Spreading. Information Processing & Management, 59(1).
  • Wang, Z., Tan, Y., & Zhang, M. (2010). Graph-Based Recommendation on Social Networks. 12th International Asia-Pacific Web Conference (s. 116-122). Busan, South Korea: IEEE.
  • Wayne, X. Z., Li, S., He, Y., Wang, L., Wen, J. R., & Li, X. (2016). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49, 61–89.
  • Wu, L., Li, S., Hsieh, C. J., & Sharpnack, J. (2020). SSE-PT: Sequential Recommendation Via Personalized Transformer. 14th ACM Conference on Recommender Systems (pp. 328–337). Brazil: ACM.
  • Wu, L., Xia, Y., Min, S., & Xia, Z. (2024). Deep Attentive Interest Collaborative Filtering for Recommender Systems. IEEE Transactions on Emerging Topics in Computing, 12(2), 467-481.
  • Wu, Y., Wei, J., Yin, J., Liu, X., & Zhang, J. (2020). Deep Collaborative Filtering Based on Outer Product. IEEE Access, 8, 85567-85574.
  • Xin, X., He, X., Zhang, Y., Zhang, Y., & Jose, J. (2019). Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation. 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 125–134). Paris, France: ACM.
  • Xue, F., He, X., Wang, X., Xu, J., Kai, L., & Hong, R. (2019). Deep Item-based Collaborative Filtering for Top-N Recommendation. ACM Transactions on Information Systems, 37(3), 1-25.
  • Yanes, N., Ayman, M. M., Ezz, M. M., & Almuayqil, S. N. (2020). A Machine Learning-Based Recommender System for Improving Students Learning Experiences. IEEE Access, 8, 201218-201235.
  • Ying, H., Zhuang, F., Zhang, F., Liu, Y., Xu, G., Xie, X., . . . Wu, J. (2018). Sequential Recommender System based on Hierarchical Attention Networks. 27th International Joint Conference on Artificial Intelligence (pp. 3926-3932). Stockholm, Sweden: AAAI Press.
  • Yun, S. Y., & Youn, S. D. (2010). Recommender system based on user information. 7th International Conference on Service Systems and Service Management (s. 1-3). Tokyo, Japan: IEEE.
  • Zeng, Z., Lin, J., Li, L., Pan, W., & Ming, Z. (2019). Next-Item Recommendation via Collaborative Filtering with Bidirectional Item Similarity. ACM Transactions on Information Systems, 38(1), 1-22.
  • Zhang, B., & Sundar, S. S. (2019). Proactive vs. reactive personalization: Can customization of privacy enhance user experience? International Journal of Human-Computer Studies, 128, 86-99.
  • Zhang, H., Wong, R. K., & Chu, V. W. (2021). Hybrid Variational Autoencoder for Recommender Systems. ACM Transactions on Knowledge Discovery from Data, 16(2).
  • Zhang, L., Wang, P., Li, J., Xiao, Z., & Shi, H. (2021). Attentive hybrid recurrent neural networks for sequential recommendation. Neural Computing and Applications, 33, 11091-11105.
  • Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7, 439–457.
  • Zhang, R., Qidong, L., Chun, G., Wei, J. X., & Huiyi, M. (2014). Collaborative Filtering for Recommender Systems. Second International Conference on Advanced Cloud and Big Data (CBD), (s. 301-308).
  • Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). “Deep learning-based recommender system: A survey and new perspectives.”
  • Zhao, Q., Zhang, H., Xia, H., & McAuley, J. (2019). Learning user representations from sequential behavior for recommendation. WSDM.
  • Zhao, L., Zhang, L., Chenyi, L., Chen, X., Gao, J., & Gao, J. (2020). Attention with Long-Term Interval-Based Deep Sequential Learning for Recommendation. Complexity.
  • Zhao, W. X., Li, S., He, Y., Wang, L., Wen, J. R., & Li, X. (2016). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49, 61–89.
  • Zheng, J., Chen, S., Du, Y., & Song, P. (2022). A multiview graph collaborative filtering by incorporating homogeneous and heterogeneous signals. Information Processing & Management, 59(6).
  • Zhou, W., Du, Y., Duan, M., Ul Haq, A., & Shah, F. (2022). NtCF: Neural Trust-Aware Collaborative Filtering Toward Hierarchical Recommendation Services. Arabian Journal for Science and Engineering, 47, 1239–1252.
  • Zhu, T., Liu, G., & Chen, G. (2020). Social Collaborative Mutual Learning for Item Recommendation. ACM Transactions on Knowledge Discovery from Data, 14(4), 1-19.
  • Zhu, Y., & Chen, Z. (2021). Variational Bandwidth Auto-Encoder for Hybrid Recommender Systems. IEEE Transactions on Knowledge and Data Engineering, 35(5), 5371-5385.
  • Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving recommendation lists through topic diversification. WWW.
  • Zou, L., Xia, L., Gu, Y., Zhao, X., Liu, W., Huang, J. X., & Yin, D. (2020). Neural Interactive Collaborative Filtering. 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 749–758). China: ACM.
There are 129 citations in total.

Details

Primary Language English
Subjects Recommender Systems
Journal Section PAPERS
Authors

Berke Akkaya 0000-0002-7903-956X

Publication Date June 1, 2025
Submission Date March 5, 2025
Acceptance Date April 26, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Akkaya, B. (2025). Current Trends in Recommender Systems: A Survey of Approaches and Future Directions. Computer Science, 10(1), 53-91. https://doi.org/10.53070/bbd.1652022

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper