Araştırma Makalesi
BibTex RIS Kaynak Göster

Biomedical Improvements of the Technology of Internet of Things in 6G

Yıl 2024, Cilt: 17 Sayı: 1, 1 - 8, 11.06.2024
https://doi.org/10.54525/bbmd.1454186

Öz

With the improvements in nanotechnology last recent years, devices have been reduced, the nanoscale, even nanosized. In addition, Internet of Nano-Things (IoNTs) is considered as the ultimate creation of this trend, with numerous applications in all areas of life with the development of sensor networks and nano-networks. However, communication between such nano-devices is still a problem to be solved. IoNTs are believed to play an important role in the development of Body-centric Nano Networks. Body-centric nano-networks, like wireless sensors, are considered domain-specific and are always applied to support a specific purpose. In these networks, molecular and electromagnetic communication are widely considered to be the two main paradigms, and both follow their own developmental process. By the newl adopted communication technology, it is estimated that the number of devices that will communicate with each other may reach the level of approximately one hundred billion in the next ten years. The transfer of such large data between devices in a faster, high quality and high reliability increases the need for 5G. With the utilization of 6G by THz band, nano-communication systems, molecular networks, hologram communication, which is a higher above the augmented reality, will also possible.

Kaynakça

  • Feynman, R. P. There's plenty of room at the bottom, Engineering and science, 1960, 23(5), 22-36 p.
  • Malak, D., ve Ozgur B. Akan. Molecular communication nano-networks inside human body, Nano Communication Networks 3.1, 2012, 19-35 p.
  • Balevi, Eren ve Ozgur B. Akan. A physical channel model for nanos-cale neuro-spike communications, IEEE Transactions on Communi-cations, 2013, 1178-1187.
  • Yang K., Deng Y., Zang R., M. Mahboob, Rahman U., Ali A. N., Imran M.A., Jonet J.M. Abbasi Q. H., Alomainy A. A, Comprehensive Survey on Hybrid Communication in Contex of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks, IEEE Transactions on Molecular, Biological and Multi-Scale Com-munications, 2020, 2-5 p.
  • S.F. Bush, J. Eckford, A. Paluh, T. Thai, T. Sato, G. Piro, Y. Chen, K. Yang, V. Rao, V. Prasad, A. Mukherjee, T. Wysocki, E. F. Armay, A. Rafiei, ve S. Goel. IEEE draft recommended practice for nanoscale and molecular communication framework. IEEE P1906.1/D1.1, 2014, 1–52 p.
  • Yuanfeng Chen, Panagiotis Kosmas, Putri Anwar, ve Liwen Huang. A touch-communication framework for drug delivery based on a tran-sientmicrobot system. Nanobioscience, IEEE Transactions on, 2015, 397–408 p.
  • Suk-Won Hwang, Hu Tao, Dae-Hyeong Kim, Huanyu Cheng, Jun-Kyul Song, Elliott Rill, Mark A Brenckle, Bruce Panilaitis, Sang Min Won, Yun-Soung Kim ve ark. A physically transient form of siliconelectro-nics. Science, 2012, 1640–1644 p.
  • Sylvain Martel, Mahmood Mohammadi, Ouajdi Felfoul, Zhao Lu, ve Pierre P. Flagellated magnetotactic bacteria as controlled mri-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. The International journal of robotics research, 2009, 571–582 p.
  • Sylvain Martel, Ouajdi Felfoul, Jean-Baptiste Mathieu, Arnaud Cha-nu, Samer Tamaz, Mahmood Mohammadi, Martin Mankiewicz, ve Nasr Tabatabaei. Mri-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. The International journal of robotics research, 2009, 1169–1182 p.
  • I.S.M. Khalil, V. Magdanz, S. Sanchez, O.G. Schmidt, L. Abelmann, ve S. Misra. Magnetic control of potential microrobotic drug delivery systems: Nanoparticles, magnetotactic bacteria and self-propelled mi-crojets. In Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE, July 2013, 5299–5302 p.
  • Yifan Chen, Panagiotis Kosmas, ve Rui Wang. Conceptual design and simulations of a nano-communication model for drug delivery based on a transient microbot system. In Antennas and Propagation (EuCAP), 8th European Conference IEEE, in 2014, 63–67 p.
  • Yuanfeng Chen, Panagiotis Kosmas, Putri Anwar, ve Liwen Huang. A touch-communication framework for drug delivery based on a tran-sient microbot system. Nanobioscience, IEEE Transactions on, 2014, 397–408 p.
  • Ian F Akyildiz, Fernando Brunetti, ve Cristina Blázquez. Nano networks: A new communication paradigm. Computer Networks,2008, 2260–2279 p.
  • Cheryl M. Molecular communication technology and implications for sport management. Emerging Technologies in Sport, 2019, IBSN:9781351117906
  • Usman M., Ansari S., Taha A., Zaid A., A. Qammer H., A.I. Muham-mad, Terahertz-Based Joint Communication and Sensing for Preci-sion Agriculture: A 6G Use-Case, Frontiers in Communication and Networks, 2022, 2-5 p.
  • Barakat B., Taha A., Samson R., Steponenatie A., Ansari S. ve Imran M.A, 6G Opportunities Arising from Internet of Things Use Cases: A Review Paper, Future Internet Journals, MDPI, 2021, 11-29 p.
  • Metin Sitti, Hakan Ceylan, Wenqi Hu, Joshua Giltinan, Mehmet Turan, Sehyuk Yim, ve Eric Diller. Biomedical applications of untet-hered mobile milli/microrobots. Proceedings of the IEEE, 2015, 205–224 p.
  • G. Enrico Santagati ve T. Melodia. Opto-ultrasonic communications for wireless intra-body nanonetworks. Nano Communication Network, 2014, 3–14 p.
  • R. Yu, T. Mak, R. Zhang, S. Wong, Zheng J Lau, Carmen C., Smart healthcare: Cloud-Enabled body sensor networks, IEEE 14th Interna-tional Conferance on Wearable and Implantable Body Sensor Networks, 2017, 99-102 p.
  • L. Felicetti, M. Femminella ve G. Reali, A molecular communications system for live detection of hyperviscosity syndrome. IEEE Transac-tions on Nano Bioscience, 2020,410-421 p. Kang,K., Cho, Y., ve Yu, K. J., Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachi-nes, 2018, 263 p.
  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., ve Mattoussi, H., Quan-tum dot bioconjugates for imaging. labelling and sensing. Nature materials, 2005, 435-446 p.
  • Harman, T. C., Taylor, P. J., Walsh, M. P., ve LaForge, B. E., Quan-tum dot superlattice thermoelectric materials and devices. Science, 2002, 2229-2232 p.
  • Song, X., Zhang, J., Yue, M., Li, E., Zeng, H., Lu, N., ve Zuo, T. Tech-nique for Preparing Ultrafine Nanocrystalline Bulk Material of Pure Rare‐Earth Metals. Advanced Materials, 18(9), 2006, 1210-1215 p.
  • Massari, S., ve Ruberti, M. Rare earth elements as critical raw mate-rials: Focus on international markets and future strategies. Resour-ces Policy, 2013, 38(1), 36-43 p.
  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., ve Geim, A. K. The electronic properties of graphene. Reviews of modern physics, 2009, 81(1), 109-162 p.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., ve Firsov, A. A. Two-dimensional gas of mass-less Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200 p.
  • Geim, A. K., ve Novoselov, K. S., The rise of graphene. In Nanosci-ence and technology: a collection of reviews. Nature journals 2010, 11-19 p.
  • Chen, S., Moore, A. L., Cai, W., Suk, J. W., An, J., Mishra, C., ve Ruoff, R. S., Raman Measurements of thermal transport in suspen-ded monolayer graphene of variable sizes in vacuum and gaseous environments. ACS nano, 5(1), 2011, 321-328 p.
  • Balandin, A. A., Thermal properties of graphene and nanostructured carbon materials. Nature materials, 10(8), 2011, 569-581 p.
  • Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K. ve Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nature materials, 11(3), 2012, 203-207 p.
  • Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., ve Shi, L., Two-dimensional phonon transport in supported grap-hene. Science, 328(5975), 2010, 213-216 p.
  • Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J. Stauber, T., ve Geim, A. K., Fine structure constant defines visual transparency of graphene. Science, 320(5881), 2008, 1308-1308 p.
  • Lee, C., Wei, X., Kysar, J. W.,ve Hone, J., Measurement of the elas-tic properties and intrinsic strength of monolayer graphene, Science, 2008, 321(5887), 385-388 p.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Yiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Nomenclature and termino-logy of graphite intercalation compounds. Science. 2004, Cilt 306, 666 p.
  • C. N. R. Rao, Kanishka Biswas, K. S. Subrahmanyama ve A. Govinda-raj, Graphene, the new nanocarbon. Journal of Materials Chemistry, 2019, 19(17), 2547-2469 p.
  • LU, Nanshu; YANG, Shixuan. Mechanics for stretchable sensors. Current Opinion in Solid State, Materials Science, 2015, 149-159 p.
  • Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H. ve Rogers, J. A., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature materi-als, 2013, 12(10), 938-944 p.
  • Wang, L., ve Lu, N., Conformability of a thin elastic membranelami-nated on a soft substrate with slightly wavy surface. Journal of Applied Mechanics, 2016, 83(4) p.
  • Yeo, W. H., Kim, Y. S., Lee, J., Ameen, A., Shi, L., Li, M., ve Rogers, J. A., Multi‐Functional Electronics: Multifunctional Epidermal Electro-nics Printed Directly Onto the Skin, Advanced Materials, 2010, 25(20), 2772-2772 p.
  • Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., ve McAlpine, M. C., Graphene-based wireless bacteria detection on tooth enamel. Nature communications, 2012, 1-9 p.
  • Kuzum, D., Takano, H., Shim, E., Reed, J. C., Juul, H., Richardson, A. G., ve Litt, B. Transparent and flexible low noise graphene electro-des for simultaneous electrophysiology and neuroimaging. Nature communications, 2014, 1-10 p.
  • Park, D. W., Schendel, A. A., Mikael, S., Brodnick, S. K., Richner, T. J., Ness, J. P., ve Williams, J. C., Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature communications, 2014, 1-11 p.
  • Lee, H., Choi, T. K., Lee, Y. B., Cho, H. R., Ghaffari, R., Wang, L., Kim, D. H. A graphene-based electrochemical device with thermo-responsive microneedles for diabetes monitoring and therapy. Nature nanotechnology, 2016, 566-572 p.
  • Choi, M. K., Park, I., Kim, D. C., Joh, E., Park, O. K., Kim, J., ve Kim, D. H., Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Advan-ced Functional Materials, 2015, 7109-7118 p.
  • Yang K., Imran M., Yao X., W. Alomainy A., ve Q. H. Abbasi, Nano-Electromagnetic Communication at TeraHertz and Optical Frequen-cies Principles and Applications, Institution of Enginnering and Technology, 2019
  • G. Yuyan, Cheng H., Esembly of Heterogeneus Materials for Biology and Electronics: From Bio-Inspriation to Bio-Integration, Journal of Electronic Packaging, 2017, 1-16 p.
  • J. M. Jornet ve I. F. Akyildiz, Graphene-based plasmonic nano transceiver for terahertz band communication, in Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), Apr. 2014, 492–496 p.
  • Ian F Akyildiz, Ahan Kak, Sunai Nie, 6G and Beyond: The Feature of Wireless Communication Systems, IEEE Access, 2020,8-30 p.
  • W. Saad, M. Bennis, ve M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, IEEE Network., vol. 34, no. 3, 2020, 134–142 p. Musk E. ve Neuralink, An Integrated Brain-Machine Interface Plat-form with Thouslands of Channels, 2019, 1-12 p.
  • The Internet of Nano Things (IoNT) existing state and future pros-pects,GSC Advanced Research and Receive, 2020, 10-20 p.

6G'de Nesnelerin İnterneti Teknolojisinin Medikal Alandaki Gelişmeleri

Yıl 2024, Cilt: 17 Sayı: 1, 1 - 8, 11.06.2024
https://doi.org/10.54525/bbmd.1454186

Öz

Günümüzde internet ortamında metne dayalı veri çok hızlı bir şekilde artış göstermektedir ve bu büyük veri içinden istenilen bilgiyi barındıran doğru içeriklere ulaşabilmek önemli bir ihtiyaçtır. İçeriklere ait anahtar sözcüklerin bilinmesi bu ihtiyacı karşılamada olumlu bir etki sağlayabilmektedir. Bu çalışmada, doğal dil işleme ve derin öğrenme modelleri ile Türkçe metinleri temsil eden anahtar sözcüklerin belirlenmesi amaçlanmıştır. Veri kümesi olarak Türkçe Etiketli Metin Derlemi ve Metin Özetleme-Anahtar Kelime Çıkarma Veri Kümesi birlikte kullanılmıştır. Derin öğrenme modeli olarak çalışmada iki farklı model ortaya konmuştur. İlk olarak Uzun Ömürlü Kısa Dönem Belleği ( LSTM) katmanlı bir Diziden Diziye (Seq2Seq) model tasarlanmıştır. Diğer model ise BERT (Transformatörler ile İki Yönlü Kodlayıcı Temsilleri) ile oluşturulmuş Seq2Seq bir modeldir. LSTM katmanlı Seq2seq modelin başarı değerlendirmesinde ROUGE-1 ölçütünde 0,38 F-1 değerine ulaşılmıştır. BERT tabanlı Seq2Seq modelde ROUGE-1 ölçütünde 0,399 F-1 değeri elde edilmiştir. Sonuç olarak dönüştürücü mimarisini temel alan BERT tabanlı Seq2Seq modelin, LSTM tabanlı Seq2seq modele görece daha başarılı olduğu gözlemlenmiştir.

Kaynakça

  • Feynman, R. P. There's plenty of room at the bottom, Engineering and science, 1960, 23(5), 22-36 p.
  • Malak, D., ve Ozgur B. Akan. Molecular communication nano-networks inside human body, Nano Communication Networks 3.1, 2012, 19-35 p.
  • Balevi, Eren ve Ozgur B. Akan. A physical channel model for nanos-cale neuro-spike communications, IEEE Transactions on Communi-cations, 2013, 1178-1187.
  • Yang K., Deng Y., Zang R., M. Mahboob, Rahman U., Ali A. N., Imran M.A., Jonet J.M. Abbasi Q. H., Alomainy A. A, Comprehensive Survey on Hybrid Communication in Contex of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks, IEEE Transactions on Molecular, Biological and Multi-Scale Com-munications, 2020, 2-5 p.
  • S.F. Bush, J. Eckford, A. Paluh, T. Thai, T. Sato, G. Piro, Y. Chen, K. Yang, V. Rao, V. Prasad, A. Mukherjee, T. Wysocki, E. F. Armay, A. Rafiei, ve S. Goel. IEEE draft recommended practice for nanoscale and molecular communication framework. IEEE P1906.1/D1.1, 2014, 1–52 p.
  • Yuanfeng Chen, Panagiotis Kosmas, Putri Anwar, ve Liwen Huang. A touch-communication framework for drug delivery based on a tran-sientmicrobot system. Nanobioscience, IEEE Transactions on, 2015, 397–408 p.
  • Suk-Won Hwang, Hu Tao, Dae-Hyeong Kim, Huanyu Cheng, Jun-Kyul Song, Elliott Rill, Mark A Brenckle, Bruce Panilaitis, Sang Min Won, Yun-Soung Kim ve ark. A physically transient form of siliconelectro-nics. Science, 2012, 1640–1644 p.
  • Sylvain Martel, Mahmood Mohammadi, Ouajdi Felfoul, Zhao Lu, ve Pierre P. Flagellated magnetotactic bacteria as controlled mri-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. The International journal of robotics research, 2009, 571–582 p.
  • Sylvain Martel, Ouajdi Felfoul, Jean-Baptiste Mathieu, Arnaud Cha-nu, Samer Tamaz, Mahmood Mohammadi, Martin Mankiewicz, ve Nasr Tabatabaei. Mri-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. The International journal of robotics research, 2009, 1169–1182 p.
  • I.S.M. Khalil, V. Magdanz, S. Sanchez, O.G. Schmidt, L. Abelmann, ve S. Misra. Magnetic control of potential microrobotic drug delivery systems: Nanoparticles, magnetotactic bacteria and self-propelled mi-crojets. In Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE, July 2013, 5299–5302 p.
  • Yifan Chen, Panagiotis Kosmas, ve Rui Wang. Conceptual design and simulations of a nano-communication model for drug delivery based on a transient microbot system. In Antennas and Propagation (EuCAP), 8th European Conference IEEE, in 2014, 63–67 p.
  • Yuanfeng Chen, Panagiotis Kosmas, Putri Anwar, ve Liwen Huang. A touch-communication framework for drug delivery based on a tran-sient microbot system. Nanobioscience, IEEE Transactions on, 2014, 397–408 p.
  • Ian F Akyildiz, Fernando Brunetti, ve Cristina Blázquez. Nano networks: A new communication paradigm. Computer Networks,2008, 2260–2279 p.
  • Cheryl M. Molecular communication technology and implications for sport management. Emerging Technologies in Sport, 2019, IBSN:9781351117906
  • Usman M., Ansari S., Taha A., Zaid A., A. Qammer H., A.I. Muham-mad, Terahertz-Based Joint Communication and Sensing for Preci-sion Agriculture: A 6G Use-Case, Frontiers in Communication and Networks, 2022, 2-5 p.
  • Barakat B., Taha A., Samson R., Steponenatie A., Ansari S. ve Imran M.A, 6G Opportunities Arising from Internet of Things Use Cases: A Review Paper, Future Internet Journals, MDPI, 2021, 11-29 p.
  • Metin Sitti, Hakan Ceylan, Wenqi Hu, Joshua Giltinan, Mehmet Turan, Sehyuk Yim, ve Eric Diller. Biomedical applications of untet-hered mobile milli/microrobots. Proceedings of the IEEE, 2015, 205–224 p.
  • G. Enrico Santagati ve T. Melodia. Opto-ultrasonic communications for wireless intra-body nanonetworks. Nano Communication Network, 2014, 3–14 p.
  • R. Yu, T. Mak, R. Zhang, S. Wong, Zheng J Lau, Carmen C., Smart healthcare: Cloud-Enabled body sensor networks, IEEE 14th Interna-tional Conferance on Wearable and Implantable Body Sensor Networks, 2017, 99-102 p.
  • L. Felicetti, M. Femminella ve G. Reali, A molecular communications system for live detection of hyperviscosity syndrome. IEEE Transac-tions on Nano Bioscience, 2020,410-421 p. Kang,K., Cho, Y., ve Yu, K. J., Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachi-nes, 2018, 263 p.
  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., ve Mattoussi, H., Quan-tum dot bioconjugates for imaging. labelling and sensing. Nature materials, 2005, 435-446 p.
  • Harman, T. C., Taylor, P. J., Walsh, M. P., ve LaForge, B. E., Quan-tum dot superlattice thermoelectric materials and devices. Science, 2002, 2229-2232 p.
  • Song, X., Zhang, J., Yue, M., Li, E., Zeng, H., Lu, N., ve Zuo, T. Tech-nique for Preparing Ultrafine Nanocrystalline Bulk Material of Pure Rare‐Earth Metals. Advanced Materials, 18(9), 2006, 1210-1215 p.
  • Massari, S., ve Ruberti, M. Rare earth elements as critical raw mate-rials: Focus on international markets and future strategies. Resour-ces Policy, 2013, 38(1), 36-43 p.
  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., ve Geim, A. K. The electronic properties of graphene. Reviews of modern physics, 2009, 81(1), 109-162 p.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., ve Firsov, A. A. Two-dimensional gas of mass-less Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200 p.
  • Geim, A. K., ve Novoselov, K. S., The rise of graphene. In Nanosci-ence and technology: a collection of reviews. Nature journals 2010, 11-19 p.
  • Chen, S., Moore, A. L., Cai, W., Suk, J. W., An, J., Mishra, C., ve Ruoff, R. S., Raman Measurements of thermal transport in suspen-ded monolayer graphene of variable sizes in vacuum and gaseous environments. ACS nano, 5(1), 2011, 321-328 p.
  • Balandin, A. A., Thermal properties of graphene and nanostructured carbon materials. Nature materials, 10(8), 2011, 569-581 p.
  • Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K. ve Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nature materials, 11(3), 2012, 203-207 p.
  • Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., ve Shi, L., Two-dimensional phonon transport in supported grap-hene. Science, 328(5975), 2010, 213-216 p.
  • Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J. Stauber, T., ve Geim, A. K., Fine structure constant defines visual transparency of graphene. Science, 320(5881), 2008, 1308-1308 p.
  • Lee, C., Wei, X., Kysar, J. W.,ve Hone, J., Measurement of the elas-tic properties and intrinsic strength of monolayer graphene, Science, 2008, 321(5887), 385-388 p.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Yiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Nomenclature and termino-logy of graphite intercalation compounds. Science. 2004, Cilt 306, 666 p.
  • C. N. R. Rao, Kanishka Biswas, K. S. Subrahmanyama ve A. Govinda-raj, Graphene, the new nanocarbon. Journal of Materials Chemistry, 2019, 19(17), 2547-2469 p.
  • LU, Nanshu; YANG, Shixuan. Mechanics for stretchable sensors. Current Opinion in Solid State, Materials Science, 2015, 149-159 p.
  • Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H. ve Rogers, J. A., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature materi-als, 2013, 12(10), 938-944 p.
  • Wang, L., ve Lu, N., Conformability of a thin elastic membranelami-nated on a soft substrate with slightly wavy surface. Journal of Applied Mechanics, 2016, 83(4) p.
  • Yeo, W. H., Kim, Y. S., Lee, J., Ameen, A., Shi, L., Li, M., ve Rogers, J. A., Multi‐Functional Electronics: Multifunctional Epidermal Electro-nics Printed Directly Onto the Skin, Advanced Materials, 2010, 25(20), 2772-2772 p.
  • Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., ve McAlpine, M. C., Graphene-based wireless bacteria detection on tooth enamel. Nature communications, 2012, 1-9 p.
  • Kuzum, D., Takano, H., Shim, E., Reed, J. C., Juul, H., Richardson, A. G., ve Litt, B. Transparent and flexible low noise graphene electro-des for simultaneous electrophysiology and neuroimaging. Nature communications, 2014, 1-10 p.
  • Park, D. W., Schendel, A. A., Mikael, S., Brodnick, S. K., Richner, T. J., Ness, J. P., ve Williams, J. C., Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature communications, 2014, 1-11 p.
  • Lee, H., Choi, T. K., Lee, Y. B., Cho, H. R., Ghaffari, R., Wang, L., Kim, D. H. A graphene-based electrochemical device with thermo-responsive microneedles for diabetes monitoring and therapy. Nature nanotechnology, 2016, 566-572 p.
  • Choi, M. K., Park, I., Kim, D. C., Joh, E., Park, O. K., Kim, J., ve Kim, D. H., Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Advan-ced Functional Materials, 2015, 7109-7118 p.
  • Yang K., Imran M., Yao X., W. Alomainy A., ve Q. H. Abbasi, Nano-Electromagnetic Communication at TeraHertz and Optical Frequen-cies Principles and Applications, Institution of Enginnering and Technology, 2019
  • G. Yuyan, Cheng H., Esembly of Heterogeneus Materials for Biology and Electronics: From Bio-Inspriation to Bio-Integration, Journal of Electronic Packaging, 2017, 1-16 p.
  • J. M. Jornet ve I. F. Akyildiz, Graphene-based plasmonic nano transceiver for terahertz band communication, in Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), Apr. 2014, 492–496 p.
  • Ian F Akyildiz, Ahan Kak, Sunai Nie, 6G and Beyond: The Feature of Wireless Communication Systems, IEEE Access, 2020,8-30 p.
  • W. Saad, M. Bennis, ve M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, IEEE Network., vol. 34, no. 3, 2020, 134–142 p. Musk E. ve Neuralink, An Integrated Brain-Machine Interface Plat-form with Thouslands of Channels, 2019, 1-12 p.
  • The Internet of Nano Things (IoNT) existing state and future pros-pects,GSC Advanced Research and Receive, 2020, 10-20 p.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Semih Sak 0000-0002-5409-7202

Mustafa Alper Akkaş 0000-0003-0185-0464

Erken Görünüm Tarihi 18 Mart 2024
Yayımlanma Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

IEEE S. Sak ve M. A. Akkaş, “6G’de Nesnelerin İnterneti Teknolojisinin Medikal Alandaki Gelişmeleri”, bbmd, c. 17, sy. 1, ss. 1–8, 2024, doi: 10.54525/bbmd.1454186.