BibTex RIS Cite

Yeast prions

Year 2010, Volume: 1 Issue: 3, 45 - 51, 05.04.2013
https://doi.org/10.12808/bcs.v1i3.10

Abstract

Abstract

Prions are responsible for neurodegenerative diseases. Altered protein conformation induces normally folded proteins to adopt infective prion form. The prion protein appears to be responsible for different diseases with different pathologies. Propagating prions are viable in S. cerevisiae cells; therefore, these eukaryotic cells provide a unique system to study prion propagation and protein disaggregation to investigate prion phenomena. Several research groups work on prions and related diseases and S. cerevisiae is a tractable model. This review focuses on [PSI+], [URE3] and [RNQ+] prions.

Keywords: Prion, PSI, URE3, PIN, Sup35, Ure2, Rqn1

Özet

Maya prionları

Prionlar nörodejeneretif hastalıklardan sorumludurlar. Değişmiş protein konformasyonu normal proteinlerin enfektif prion haline geçmesini indükler. Prion protein farklı patolojideki hastalıkların oluşumundan sorumludur. Biriken prionlar S. cerevisiae hücrelerinde görselleştirilebilirler, bunun için bu ökaryotik hücreler prion konusunu araştırmada prion birikimi ve protein ayrışması için önemli bir sistem oluşturur. Birçok araştırma grubu prion ve ilgili hastalıkları çalışmaktadırlar ve S. cerevisiae uygun bir modeldir. Bu derleme [PSI+], [URE3] ve [RNQ+] prionları üzerine yoğunlaşmıştır.

Anahtar sözcükler: Prion, PSI, URE3, PIN, Sup35, Ure2, Rqn1

References

  • Tutar L., Tutar Y. Heat shock proteins; an overview. Curr Pharm Biotechnol. 2010 11:216-22.
  • Weibezahn J., Schlieker C., Tessarz P., Mogk A., Bukau B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem. 2005 386: 739-744.
  • Glover J.R., Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998 94: 73-82.
  • Jones G.W., Tuite M.F. Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 2005 27: 823-832.
  • Guinan E, Jones G.W. Influence of Hsp70 chaperone machinery on yeast prion propagation. Protein Pept Lett. 2009 16: 583-586.
  • Wickner R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. 1994 264: 566-569.
  • Brachmann A., Baxa U., Wickner R.B. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J. 2005 24: 3082-3092.
  • King C.Y., Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004 428: 319-323.
  • Patel B.K., Liebman S.W. "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. J Mol Biol. 2007 365: 773-782.
  • Crapeau M., Marchal C., Cullin C., Maillet L. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion. Mol Biol Cell. 2009 20: 2286-2296.
  • Perrett S., Jones G.W. Insights into the mechanism of prion propagation. Curr Opin Struct Biol. 200818: 52-59.
  • Bagriantsev S.N., Gracheva E.O., Richmond J.E., Liebman S.W. Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol Biol Cell. 2008 19: 2433-2443.
  • Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+].Science. 1995 268: 880-884.
  • Satpute-Krishnan P., Langseth S.X., Serio T.R. Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol. 2007 5: e24.
  • Erhardt M., Wegrzyn R.D., Deuerling E. Extra N-Terminal Residues Have a Profound Effect on the Aggregation Properties of the Potential Yeast Prion Protein Mca1. PLoS ONE 2010 5: e9929.
  • Du Z., Park K. W., Yu H., Fan Q., Li, L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 2008 40: 460–465.
  • Lian H.Y., Jiang Y., Zhang H., Jones G.W., Perrett S. The yeast prion protein Ure2: structure, function and folding. Biochim Biophys Acta. 2006 1764: 535-545.
  • Wickner R.B., Taylor K.L., Edskes H.K., Maddelein M.L., Moriyama H., Roberts B.T. Prions in Saccharomyces and Podospora spp.: protein-based inheritance. Microbiol Mol Biol Rev. 1999 63: 844-861.
  • Kushnirov V.V., Ter-Avanesyan M.D., Telckov M.V., Surguchov A.P., Smirnov V.N., Inge-Vechtomov S.G. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 1988 66: 45-54.
  • Fisher C.R. Enzymology of the pigmented adenine-requiring mutants of Saccharomyces and Schizosaccharomyces. Biochem Biophys Res Commun. 1969 34: 306-310.
  • Ter-Avanesyan M.D., Kushnirov V.V., Dagkesamanskaya A.R., Didichenko S.A., Chernoff Y.O., Inge-Vechtomov S.G., Smirnov V.N. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol. 1993 7: 683-692.
  • Ter-Avanesyan M.D., Dagkesamanskaya A.R., Kushnirov V.V., Smirnov V.N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non- Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics. 1994 137: 671-676.
  • Liu J.J., Sondheimer N., Lindquist S.L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci U S A. 2002; 99 Suppl 4:16446-16453.
  • Bradley M.E., Liebman S.W. The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol. 2004 51: 1649-1659.
  • Prusiner S.B., Scott M.R. Genetics of prions. Annu Rev Genet. 1997 31: 139-175.
  • Liu J.J., Lindquist S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 1999 400: 573-576.
  • Xu S., Falvey D.A., Brandriss M.C. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1995 15: 2321- 2330.
  • Masison D.C., Edskes H.K., Maddelein M.L., Taylor K.L., Wickner R.B. [URE3] and [PSI] are prions of yeast and evidence for new fungal prions. Curr Issues Mol Biol. 2000 2: 51-59.
  • Ruff, D.W., Shannon, M.E., Livak, K.J., Guegler, K.J., Hennessy, K.M. Methods, Compositions, and Kits for Detecting Protein Aggregates. US20080003604A1 2008.
  • Antloga, K.M., McDonnell, G.E. Vitro Model of Priocidal Activity. US7129080B2 2006.
  • Winnacker, E.L., Weiss, S., Edenhofer, F., Rieger, R. Chaperones Capable of Binding to Prion Proteins and Distinguishing The Isoforms PRPs and PRPsc US6451541B1 2007.
  • Catrillon, J.C., Prieto, P.S., Soto-Jara, C. Ultrasensitive Detection of Prions by Automated Protein Misfolding Cyclic Amplification. US20060263767A1 2006.
  • Merril, C.R., Ghanbari, H.A. Methods of Treating Prion Disease in Mammals. US20020150631A1 2002.
  • Kazantsev, A.G., Young, A.B., Housman, D.E., Hersch, S. Compositions and Methods for Modulating Interaction Between Polypeptides. US20050239833A1 2005.
  • Blondel, M., Cullin, C., Vierfond, J.M., Bach, S., Talarek, N., Mettey, Y.Screening Molecules with Anti-Prion Activity: Kits, Methods and Screened Molecules. US2006017233A1 2006.
Year 2010, Volume: 1 Issue: 3, 45 - 51, 05.04.2013
https://doi.org/10.12808/bcs.v1i3.10

Abstract

References

  • Tutar L., Tutar Y. Heat shock proteins; an overview. Curr Pharm Biotechnol. 2010 11:216-22.
  • Weibezahn J., Schlieker C., Tessarz P., Mogk A., Bukau B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem. 2005 386: 739-744.
  • Glover J.R., Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998 94: 73-82.
  • Jones G.W., Tuite M.F. Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 2005 27: 823-832.
  • Guinan E, Jones G.W. Influence of Hsp70 chaperone machinery on yeast prion propagation. Protein Pept Lett. 2009 16: 583-586.
  • Wickner R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. 1994 264: 566-569.
  • Brachmann A., Baxa U., Wickner R.B. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J. 2005 24: 3082-3092.
  • King C.Y., Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004 428: 319-323.
  • Patel B.K., Liebman S.W. "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. J Mol Biol. 2007 365: 773-782.
  • Crapeau M., Marchal C., Cullin C., Maillet L. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion. Mol Biol Cell. 2009 20: 2286-2296.
  • Perrett S., Jones G.W. Insights into the mechanism of prion propagation. Curr Opin Struct Biol. 200818: 52-59.
  • Bagriantsev S.N., Gracheva E.O., Richmond J.E., Liebman S.W. Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol Biol Cell. 2008 19: 2433-2443.
  • Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+].Science. 1995 268: 880-884.
  • Satpute-Krishnan P., Langseth S.X., Serio T.R. Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol. 2007 5: e24.
  • Erhardt M., Wegrzyn R.D., Deuerling E. Extra N-Terminal Residues Have a Profound Effect on the Aggregation Properties of the Potential Yeast Prion Protein Mca1. PLoS ONE 2010 5: e9929.
  • Du Z., Park K. W., Yu H., Fan Q., Li, L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 2008 40: 460–465.
  • Lian H.Y., Jiang Y., Zhang H., Jones G.W., Perrett S. The yeast prion protein Ure2: structure, function and folding. Biochim Biophys Acta. 2006 1764: 535-545.
  • Wickner R.B., Taylor K.L., Edskes H.K., Maddelein M.L., Moriyama H., Roberts B.T. Prions in Saccharomyces and Podospora spp.: protein-based inheritance. Microbiol Mol Biol Rev. 1999 63: 844-861.
  • Kushnirov V.V., Ter-Avanesyan M.D., Telckov M.V., Surguchov A.P., Smirnov V.N., Inge-Vechtomov S.G. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 1988 66: 45-54.
  • Fisher C.R. Enzymology of the pigmented adenine-requiring mutants of Saccharomyces and Schizosaccharomyces. Biochem Biophys Res Commun. 1969 34: 306-310.
  • Ter-Avanesyan M.D., Kushnirov V.V., Dagkesamanskaya A.R., Didichenko S.A., Chernoff Y.O., Inge-Vechtomov S.G., Smirnov V.N. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol. 1993 7: 683-692.
  • Ter-Avanesyan M.D., Dagkesamanskaya A.R., Kushnirov V.V., Smirnov V.N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non- Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics. 1994 137: 671-676.
  • Liu J.J., Sondheimer N., Lindquist S.L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci U S A. 2002; 99 Suppl 4:16446-16453.
  • Bradley M.E., Liebman S.W. The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol. 2004 51: 1649-1659.
  • Prusiner S.B., Scott M.R. Genetics of prions. Annu Rev Genet. 1997 31: 139-175.
  • Liu J.J., Lindquist S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 1999 400: 573-576.
  • Xu S., Falvey D.A., Brandriss M.C. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1995 15: 2321- 2330.
  • Masison D.C., Edskes H.K., Maddelein M.L., Taylor K.L., Wickner R.B. [URE3] and [PSI] are prions of yeast and evidence for new fungal prions. Curr Issues Mol Biol. 2000 2: 51-59.
  • Ruff, D.W., Shannon, M.E., Livak, K.J., Guegler, K.J., Hennessy, K.M. Methods, Compositions, and Kits for Detecting Protein Aggregates. US20080003604A1 2008.
  • Antloga, K.M., McDonnell, G.E. Vitro Model of Priocidal Activity. US7129080B2 2006.
  • Winnacker, E.L., Weiss, S., Edenhofer, F., Rieger, R. Chaperones Capable of Binding to Prion Proteins and Distinguishing The Isoforms PRPs and PRPsc US6451541B1 2007.
  • Catrillon, J.C., Prieto, P.S., Soto-Jara, C. Ultrasensitive Detection of Prions by Automated Protein Misfolding Cyclic Amplification. US20060263767A1 2006.
  • Merril, C.R., Ghanbari, H.A. Methods of Treating Prion Disease in Mammals. US20020150631A1 2002.
  • Kazantsev, A.G., Young, A.B., Housman, D.E., Hersch, S. Compositions and Methods for Modulating Interaction Between Polypeptides. US20050239833A1 2005.
  • Blondel, M., Cullin, C., Vierfond, J.M., Bach, S., Talarek, N., Mettey, Y.Screening Molecules with Anti-Prion Activity: Kits, Methods and Screened Molecules. US2006017233A1 2006.
There are 35 citations in total.

Details

Primary Language English
Journal Section Basic Sciences
Authors

Yusuf Tutar

Publication Date April 5, 2013
Published in Issue Year 2010 Volume: 1 Issue: 3

Cite

APA Tutar, Y. (2013). Yeast prions. Basic and Clinical Sciences, 1(3), 45-51. https://doi.org/10.12808/bcs.v1i3.10
AMA Tutar Y. Yeast prions. Basic and Clinical Sciences. April 2013;1(3):45-51. doi:10.12808/bcs.v1i3.10
Chicago Tutar, Yusuf. “Yeast Prions”. Basic and Clinical Sciences 1, no. 3 (April 2013): 45-51. https://doi.org/10.12808/bcs.v1i3.10.
EndNote Tutar Y (April 1, 2013) Yeast prions. Basic and Clinical Sciences 1 3 45–51.
IEEE Y. Tutar, “Yeast prions”, Basic and Clinical Sciences, vol. 1, no. 3, pp. 45–51, 2013, doi: 10.12808/bcs.v1i3.10.
ISNAD Tutar, Yusuf. “Yeast Prions”. Basic and Clinical Sciences 1/3 (April 2013), 45-51. https://doi.org/10.12808/bcs.v1i3.10.
JAMA Tutar Y. Yeast prions. Basic and Clinical Sciences. 2013;1:45–51.
MLA Tutar, Yusuf. “Yeast Prions”. Basic and Clinical Sciences, vol. 1, no. 3, 2013, pp. 45-51, doi:10.12808/bcs.v1i3.10.
Vancouver Tutar Y. Yeast prions. Basic and Clinical Sciences. 2013;1(3):45-51.