Research Article
BibTex RIS Cite

KADINLARIN İŞGÜCÜNE KATILIMI ÜZERİNDE DİJİTAL VE FİNANSAL TEKNOLOJİLERİN ROLÜ

Year 2025, Volume: 3 Issue: 1, 33 - 44, 31.07.2025

Abstract

Bu araştırmanın birincil amacı, kadınların işgücüne katılımını, Bilgi ve İletişim Teknolojileri (ICT) ve Finansal Teknolojiler (Fintek) çerçevesinde analiz etmektir. ICT, kadınları ve finansal katılımı güçlendirmede önemli bir role sahiptir. Aynı zamanda kadınların iş ve aile görevlerini dengelemesini kolaylaştırarak kadınların işgücüne katılımını artırmaktadır. Kültürel normlar ve gelişmişlik düzeyleri nedeniyle kadınların işgücüne katılımı erkeklerden daha düşüktür. Literatürde işgücüne katılım oranı ve ekonomik gelişme düzeyi hakkında çok sayıda araştırma olmasına rağmen; ICT’nin kadınların işgücü piyasası sonuçları üzerindeki etkilerini değerlendiren çalışma sayısı azdır. Dijital teknolojiler, istihdamda cinsiyet açığını kapatmak için gerekli olsa da finans ve makine imalatı gibi karmaşık ve yüksek vasıflı sektörlerde cinsiyet eşitsizlikleri görülebilmektedir.Yapılan literatür çalışmaları ,internet ve mobil internet erişiminin kadın işgücüne olan talebi artırdığını göstermektedir. Dolayısıyla teknolojik olarak gelişmiş ülkelerde kadınların işgücüne katılım oranı yüksektir.Çalışmanın analiz kısmı, seçilmiş Ekonomik İşbirliği ve Kalkınma Örgütü (OECD) ülkelerinde ICT ve finansal teknolojilerin kadınların işgücüne katılımı üzerindeki sonuçlarını değerlendirmektedir. Modelde bağımlı değişken olarak kadınların işgücüne katılım oranı ve açıklayıcı bağımsız değişken olarak; kadınların günlük internet kullanımı, kişi başına mobil geniş bant internet penetrasyon oranı, kadınların mobil bankacılık kullanım oranı (finansal teknolojileri temsil eden) verileri ele alınmıştır. 2010–2021 dönemi için panel veri yöntemi ile ilgili katsayılar tahmin edilmiştir.

References

  • Asteriou, D., ve Hall, S. G. (2021). Applied Econometrics. Ireland, Bloomsbury Publishing.
  • Baltagi, B. H., Egger, P. ve Pfaffermayr, M. (2013). A Generalized Spatial Panel Data Model with Random Effects. Econometric Reviews, 32(5-6),650-685.
  • Baltagi, B. H. ve Li, Q. (1995). Testing AR (1) Against MA (1) Disturbances in an Error Component Model. Journal of Econometrics, 68(1), 133-151.
  • Chun, N. ve Tang, H. (2018). Do Information and Communication Technologies Empower Female Workers? Firm-Level Evidence from Vietnam. ADB. Economics Working Paper Series 545. Asian Development Bank. Philippines. 02.11.2023 tarihinde https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3188637 adresinden alındı.
  • Demirgüç-Kunt, A., Klapper, L., Singer, D. ve Ansar, S. (2018). The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution.Washington: World Bank Publications.
  • Dettling, L. J. (2017). Broadband in the Labor Market: The Impact of Residential High-Speed Internet on Married Women’s Labor Force Participation. SSRN Electronic Journal, 70(2), 451-482.
  • Hoechle, D. (2007). Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Stata Journal, 7(3), 281-312.
  • Lindley, J. (2012). The Gender Dimension of Technical Change and the Role of Task Inputs. Labour Economics, 19(4), 516-526.
  • Loko, M. B. ve Yang, Y. (2022). Fintech, Female Employment, and Gender Inequality. U.S.A: International Monetary Fund.
  • O’Hanlon, S. (2020). FinTech for Dummies, John Wiley & Sons, Incorporated, ProQuest Ebook Central. 01.10.2023 tarihinde https://ebookcentral.proquest.com/lib/selcuk/detail.action?docID=6299783 adresinden alındı.
  • Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels. Available at SSRN 572504. 02.11.2023 tarihinde https://papers.ssrn.com/sol3/papers.cfm?abstract_id=572504. adresinden alındı.
  • Qiu, J., Wang, B. ve Zhou, C. (2020). Forecasting Stock Prices with Long-Short Term Memory Neural Network Based on Attention Mechanism. Plos One, 15(1), 1–15.
  • Roztocki, N., Soja, P. ve Weistroffer, H. R. (2019). The Role of Information and Communication Technologies in Socioeconomic Development: Towards A Multi-Dimensional Framework. Information Technology for Development, 25(2),171-183.
  • Sarmento, E. D. M. ve Herman, R. P. (2020). Global Handbook of Impact Investing: Solving Global Problems via Smarter Capital Markets Towards a More Sustainable Society. New Jersey: John Wiley & Sons.Inc.Hoboken.
  • Suhaida, M. A., Nurulhuda, M. S. ve Yap, S. F. (2013). Access to ICT as Moderating Factor to Women’s Participation in the Labor Force: A Conceptual Framework. International Journal of Trade, Economics and Finance, 4(4), 197-201.
  • Wooldridge, M.J. (2002). An Introduction to Multi-Agent Systems. Montréal:John Wiley&Sons.
  • World Bank (2017). Global Findex Database. 03.11.2023 tarihinde https://documents. Worldbank.org/en/publication/documentsreports/documentdetail/332881525873182837/the-global-findex- database-2017-measuring-financial-inclusion-and-the-fintech-revolution adresinden alındı. Zhou, G., Zhu, J. ve S. Luo (2022). The Impact of Fintech Innovation on Green Growth in China: Mediating Effect of Green Finance. Ecological Economics, (193), 107308.

THE ROLE OF DIGITAL TECHNOLOGIES AND FINTECH FOR WOMEN LABOR PARTICIPATION

Year 2025, Volume: 3 Issue: 1, 33 - 44, 31.07.2025

Abstract

The primary purpose of this research is to analyse female labor participation and information and communication technologies (ICT) within financial technologies. ICT has an important role in empowering women and financial participation, and at the same time, it increases women's participation in the workforce by making it easier for them to balance their work and family responsibilities. Due to cultural norms and levels of development, women's participation in the labour force is lower than that of men. Although there are numerous studies in the literature on labour force participation rates and levels of economic development, there are few studies evaluating the impact of ICT on women's labour market outcomes. While digital technologies are necessary to close the gender gap in employment, gender inequalities can still be observed in complex and highly skilled sectors such as finance and machinery manufacturing. Literature studies show that internet and mobile internet access increase the demand for female labour. Therefore, women's labour force participation rates are high in technologically advanced countries. The analysis section of the study evaluates the impact of information and communication technologies and financial technologies on women's participation in the labour force in selected Organisation for Economic Co-operation and Development (OECD) countries. The model uses women's labour force participation rate as the dependent variable and the following explanatory independent variables: women's daily internet usage, mobile broadband internet penetration rate per capita, and women's mobile banking usage rate (representing financial technologies). The relevant coefficients were estimated using panel data methods for the period 2010–2021.

References

  • Asteriou, D., ve Hall, S. G. (2021). Applied Econometrics. Ireland, Bloomsbury Publishing.
  • Baltagi, B. H., Egger, P. ve Pfaffermayr, M. (2013). A Generalized Spatial Panel Data Model with Random Effects. Econometric Reviews, 32(5-6),650-685.
  • Baltagi, B. H. ve Li, Q. (1995). Testing AR (1) Against MA (1) Disturbances in an Error Component Model. Journal of Econometrics, 68(1), 133-151.
  • Chun, N. ve Tang, H. (2018). Do Information and Communication Technologies Empower Female Workers? Firm-Level Evidence from Vietnam. ADB. Economics Working Paper Series 545. Asian Development Bank. Philippines. 02.11.2023 tarihinde https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3188637 adresinden alındı.
  • Demirgüç-Kunt, A., Klapper, L., Singer, D. ve Ansar, S. (2018). The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution.Washington: World Bank Publications.
  • Dettling, L. J. (2017). Broadband in the Labor Market: The Impact of Residential High-Speed Internet on Married Women’s Labor Force Participation. SSRN Electronic Journal, 70(2), 451-482.
  • Hoechle, D. (2007). Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Stata Journal, 7(3), 281-312.
  • Lindley, J. (2012). The Gender Dimension of Technical Change and the Role of Task Inputs. Labour Economics, 19(4), 516-526.
  • Loko, M. B. ve Yang, Y. (2022). Fintech, Female Employment, and Gender Inequality. U.S.A: International Monetary Fund.
  • O’Hanlon, S. (2020). FinTech for Dummies, John Wiley & Sons, Incorporated, ProQuest Ebook Central. 01.10.2023 tarihinde https://ebookcentral.proquest.com/lib/selcuk/detail.action?docID=6299783 adresinden alındı.
  • Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels. Available at SSRN 572504. 02.11.2023 tarihinde https://papers.ssrn.com/sol3/papers.cfm?abstract_id=572504. adresinden alındı.
  • Qiu, J., Wang, B. ve Zhou, C. (2020). Forecasting Stock Prices with Long-Short Term Memory Neural Network Based on Attention Mechanism. Plos One, 15(1), 1–15.
  • Roztocki, N., Soja, P. ve Weistroffer, H. R. (2019). The Role of Information and Communication Technologies in Socioeconomic Development: Towards A Multi-Dimensional Framework. Information Technology for Development, 25(2),171-183.
  • Sarmento, E. D. M. ve Herman, R. P. (2020). Global Handbook of Impact Investing: Solving Global Problems via Smarter Capital Markets Towards a More Sustainable Society. New Jersey: John Wiley & Sons.Inc.Hoboken.
  • Suhaida, M. A., Nurulhuda, M. S. ve Yap, S. F. (2013). Access to ICT as Moderating Factor to Women’s Participation in the Labor Force: A Conceptual Framework. International Journal of Trade, Economics and Finance, 4(4), 197-201.
  • Wooldridge, M.J. (2002). An Introduction to Multi-Agent Systems. Montréal:John Wiley&Sons.
  • World Bank (2017). Global Findex Database. 03.11.2023 tarihinde https://documents. Worldbank.org/en/publication/documentsreports/documentdetail/332881525873182837/the-global-findex- database-2017-measuring-financial-inclusion-and-the-fintech-revolution adresinden alındı. Zhou, G., Zhu, J. ve S. Luo (2022). The Impact of Fintech Innovation on Green Growth in China: Mediating Effect of Green Finance. Ecological Economics, (193), 107308.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Employment
Journal Section Research Articles
Authors

Esra Kabaklarlı 0000-0001-7205-8584

Yasemin Telli Üçler 0000-0002-7695-2003

Publication Date July 31, 2025
Submission Date May 9, 2024
Acceptance Date July 6, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

APA Kabaklarlı, E., & Telli Üçler, Y. (2025). KADINLARIN İŞGÜCÜNE KATILIMI ÜZERİNDE DİJİTAL VE FİNANSAL TEKNOLOJİLERİN ROLÜ. Bitlis Eren Sosyal Araştırmalar Dergisi, 3(1), 33-44.

Bitlis Eren Journal of Social Research is licensed under the Creative Commons Attribution-NonCommercial-Non-Derivative 4.0 International Licence (CC BY-NC-ND 4.0).