BibTex RIS Cite

$p$-Summable Sequence Spaces with Inner Products

Year 2015, , 37 - 41, 22.06.2015
https://doi.org/10.17678/beujst.06700

Abstract

We revisit the space $\ell^p$ of $p$-summable sequences of real
numbers. In particular, we show that this space is actually
contained in a (weighted) inner product space. The relationship
between $\ell^p$ and the (weighted) inner product space that
contains $\ell^p$ is studied. For $p>2$, we also obtain a result
which describe how the weighted inner product space is associated
to the weights.

References

  • Berberian SK (1961). Introduction to Hilbert Space. Oxford University Press, New York. 1
  • Gunawan H, Setya-Budhi W, Mashadi, Gemawati S (2005). On volumes of n -dimensional parallelepipeds on p spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16, 48-54. 2
  • Hilbert D (1912). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. New York, Chelsea. 3
  • Idris M, Ekariani S, Gunawan H (2013). On the space of p - summable sequences. Matematiqki Vesnik, 65 No 1, 58- 63.
  • Kreyszig E (1978). Introductory Functional Analysis with Applications. New York, John Wiley & Sons. 5
  • Miličić PM (1987). Une généralisation naturelle du produit scaleaire dans un espace normé et son utilisation. Univerzitet u Beogradu. Publ. Inst. Math. (Beograd), 42 No 56, 63-70. 6
Year 2015, , 37 - 41, 22.06.2015
https://doi.org/10.17678/beujst.06700

Abstract

References

  • Berberian SK (1961). Introduction to Hilbert Space. Oxford University Press, New York. 1
  • Gunawan H, Setya-Budhi W, Mashadi, Gemawati S (2005). On volumes of n -dimensional parallelepipeds on p spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16, 48-54. 2
  • Hilbert D (1912). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. New York, Chelsea. 3
  • Idris M, Ekariani S, Gunawan H (2013). On the space of p - summable sequences. Matematiqki Vesnik, 65 No 1, 58- 63.
  • Kreyszig E (1978). Introductory Functional Analysis with Applications. New York, John Wiley & Sons. 5
  • Miličić PM (1987). Une généralisation naturelle du produit scaleaire dans un espace normé et son utilisation. Univerzitet u Beogradu. Publ. Inst. Math. (Beograd), 42 No 56, 63-70. 6
There are 6 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Şükran Konca

Mochammad Idris This is me

Hendra Gunawan This is me

Publication Date June 22, 2015
Submission Date June 22, 2015
Published in Issue Year 2015

Cite

IEEE Ş. Konca, M. Idris, and H. Gunawan, “$p$-Summable Sequence Spaces with Inner Products”, Bitlis Eren University Journal of Science and Technology, vol. 5, no. 1, pp. 37–41, 2015, doi: 10.17678/beujst.06700.