Effect of deformation on gamow-teller strength and electron capture cross-section for chromium isotopes
Year 2020,
, 25 - 29, 18.06.2020
Asim Ullah
Muahmmad Riaz
Jameel-un Nabı
,
Mahmut Böyükata
,
Necla Çakmak
Abstract
In this work, we explore
the role of deformation parameter (β) on the calculated Gamow-Teller (GT)
strength distributions and electron capture cross-sections (ECC) for 46,48,50Cr
isotopes within the formalism of the proton neutron-quasi-particle random phase
approximation (pn-QRPA). Three different β parameters were used in the present
study. Two of them were calculated by using the interacting boson model (IBM)
and the macroscopic-microscopic (Mac-mic) models. The third one is the
experimental β values obtained by employing its relation with the experimental
B(E2)↑ values. The GT strength distributions were
widely dispersed among all the daughter states of the given isotopes. They were
found to have an inverse relation with the β
parameter i.e decreasing with increasing the β value. The ECC was
computed as a function of the β parameter and the results suggest that the
calculated ECC decreased with decreasing value of the β for the selected cases.
Supporting Institution
Higher Education Commission Pakistan, Pakistan Science Foundation , Higher Education Council of Turkey,
Project Number
5557/KPK/NRPU/R&D/HEC/2016; 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 ; PSFTUBITAK/KP-GIKI (02); MEV-2019-1745, MEV-2018-300
Thanks
J.-U. Nabi would like to acknowledge the support of the Higher Education Commission Pakistan through project numbers 5557/KPK/NRPU/R&D/HEC/2016 and 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 and Pakistan Science Foundation through project number PSFTUBITAK/KP-GIKI (02). M. Böyükata would like to acknowledge the support of Higher Education Council of Turkey through project number MEV-2019-1745 of project-based international exchange program. N. Çakmak would like to acknowledge the support of Higher Education Council of Turkey through project number MEV-2018-300 of project-based international exchange program.
References
- [1] G. M. Fuller, W. A. Fowler and M. J. Newman, Astrophys. J. Suppl. Ser. 42 (1980).
- [2] E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.
- [3] P. G. Giannaka and T. S. Kosmas, Electron Capture Cross Sections for Stellar Nucleosynthesis, Adv. H. E. Phys. 2015, (2014) 11.
- [4] G. Marti ̀nez-Pinedo, K. Langanke, D. J. Dean, Astrophys. J. Suppl. Ser. 126 (2000) 493.
- [5] A. Heger, K. Langanke, G. Marti ̀nez-Pinedo, S. E. Woosley, Phys. Rev. Lett. 86 (2001) 1678.
- [6] A. Ullah, J.-U. Nabi and M. Riaz, Int. J. Mod. Phys. D 28 (2019) 2040011.
- [7] J.-U. Nabi and M. Riaz, J. Phys. G: Nucl. Part. Phys. 47, (2019) 085201.
- [8] J.-U. Nabi, M. Böyükata, Nucl. Phy. A 947 (2016) 182.
- [9] J.-U. Nabi, Böyükata, Astrophys Space Sci. 362 (2017) 9.
- [10] J.-U. Nabi, M. Ishfaq, M. Böyükata, M. Riaz, Nucl. Phy. A 966 (2017) 1.
- [11] S. G. Nilsson, G Nilsson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29 (1955) 16.
- [12] K. Ikeda, S. Fujii and J. I. Fujita, Phys. Lett. 3, (1963) 271.
- [13] I. Ragnarsson and R. K. Sheline, Phys. Scr. 29, (1984) 385.
- [14] G. Audi, F. Kondev, M. Wang, W. Huang, and S. Naimi, Chinese physics C, 41 (2017) 030001.
- [15] K. Nakamura, (Particle Data Group): J. Phys. G, Nucl. Part. Phys. 37, (2010) 075021.
- [16] J. C. Hardy, and I. S. Towner, Phys. Rev. C 79, (2009) 055502.
- [17] N. Paar, G. Col‘o, E. Khan, and D. Vretenar, Phys. Rev.C 80 (2009) 055801.
- [18] J. D. Walecka, Theoretical nuclear and subnuclear physics, (World Scientific Publishing Company, 2004).
- [19] N. Gove and M. Martin, At. Data Nucl. Data Tables, 10 (1971) 205-219.
- [20] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Astrophys. and Space Sc. 361 (2016) 71.
- [21] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Phys. Scr. 91 (2016) 055301.
- [22] P. Moller and J. R. Nix, At. Data Nucl. Data Tables, 26 (1981) 165-196.
- [23] A. Arima and F. Iachello., Annals of Physics 99 (1976) 253-317.
- [24] A. E. L. Dieperink, O. Scholten and F. Iachello, Phys. Rev. Lett. 44 (1980) 1747.
- [25] A. E. L. Dieperink, O. Scholten, Nucl. Phys. A 346 (1980) 125.
- [26] J. N. Ginocchio, M. W. Kirson, Phys. Rev. Lett. 44 (1980) 1744.
- [27] J. N. Ginocchio, M. W. Kirson, Nucl. Phys. A 350 (1980) 31.
- [28] P. Van Isacker and J.-Q. Chen, Phys. Rev. C 24 (1981) 684.
- [29] A. Bohr and B. R. Mottelson, Nuclear Structure. Volume 2: Nuclear Deformation, World Scientific Publishing, 1998.
- [30] National Nuclear Data Center (NNDC), http://www.nndc. bnl.gov/, 2019.
- [31] K. Langanke, E. Kolbe, and D. Dean, Phys. Rev. C, 63 (2001) 032801.
Year 2020,
, 25 - 29, 18.06.2020
Asim Ullah
Muahmmad Riaz
Jameel-un Nabı
,
Mahmut Böyükata
,
Necla Çakmak
Project Number
5557/KPK/NRPU/R&D/HEC/2016; 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 ; PSFTUBITAK/KP-GIKI (02); MEV-2019-1745, MEV-2018-300
References
- [1] G. M. Fuller, W. A. Fowler and M. J. Newman, Astrophys. J. Suppl. Ser. 42 (1980).
- [2] E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.
- [3] P. G. Giannaka and T. S. Kosmas, Electron Capture Cross Sections for Stellar Nucleosynthesis, Adv. H. E. Phys. 2015, (2014) 11.
- [4] G. Marti ̀nez-Pinedo, K. Langanke, D. J. Dean, Astrophys. J. Suppl. Ser. 126 (2000) 493.
- [5] A. Heger, K. Langanke, G. Marti ̀nez-Pinedo, S. E. Woosley, Phys. Rev. Lett. 86 (2001) 1678.
- [6] A. Ullah, J.-U. Nabi and M. Riaz, Int. J. Mod. Phys. D 28 (2019) 2040011.
- [7] J.-U. Nabi and M. Riaz, J. Phys. G: Nucl. Part. Phys. 47, (2019) 085201.
- [8] J.-U. Nabi, M. Böyükata, Nucl. Phy. A 947 (2016) 182.
- [9] J.-U. Nabi, Böyükata, Astrophys Space Sci. 362 (2017) 9.
- [10] J.-U. Nabi, M. Ishfaq, M. Böyükata, M. Riaz, Nucl. Phy. A 966 (2017) 1.
- [11] S. G. Nilsson, G Nilsson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29 (1955) 16.
- [12] K. Ikeda, S. Fujii and J. I. Fujita, Phys. Lett. 3, (1963) 271.
- [13] I. Ragnarsson and R. K. Sheline, Phys. Scr. 29, (1984) 385.
- [14] G. Audi, F. Kondev, M. Wang, W. Huang, and S. Naimi, Chinese physics C, 41 (2017) 030001.
- [15] K. Nakamura, (Particle Data Group): J. Phys. G, Nucl. Part. Phys. 37, (2010) 075021.
- [16] J. C. Hardy, and I. S. Towner, Phys. Rev. C 79, (2009) 055502.
- [17] N. Paar, G. Col‘o, E. Khan, and D. Vretenar, Phys. Rev.C 80 (2009) 055801.
- [18] J. D. Walecka, Theoretical nuclear and subnuclear physics, (World Scientific Publishing Company, 2004).
- [19] N. Gove and M. Martin, At. Data Nucl. Data Tables, 10 (1971) 205-219.
- [20] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Astrophys. and Space Sc. 361 (2016) 71.
- [21] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Phys. Scr. 91 (2016) 055301.
- [22] P. Moller and J. R. Nix, At. Data Nucl. Data Tables, 26 (1981) 165-196.
- [23] A. Arima and F. Iachello., Annals of Physics 99 (1976) 253-317.
- [24] A. E. L. Dieperink, O. Scholten and F. Iachello, Phys. Rev. Lett. 44 (1980) 1747.
- [25] A. E. L. Dieperink, O. Scholten, Nucl. Phys. A 346 (1980) 125.
- [26] J. N. Ginocchio, M. W. Kirson, Phys. Rev. Lett. 44 (1980) 1744.
- [27] J. N. Ginocchio, M. W. Kirson, Nucl. Phys. A 350 (1980) 31.
- [28] P. Van Isacker and J.-Q. Chen, Phys. Rev. C 24 (1981) 684.
- [29] A. Bohr and B. R. Mottelson, Nuclear Structure. Volume 2: Nuclear Deformation, World Scientific Publishing, 1998.
- [30] National Nuclear Data Center (NNDC), http://www.nndc. bnl.gov/, 2019.
- [31] K. Langanke, E. Kolbe, and D. Dean, Phys. Rev. C, 63 (2001) 032801.