Research Article
BibTex RIS Cite

Influence of deformed potentials on elastic scattering reactions involving deformed projectile-spherical target

Year 2021, , 1 - 5, 13.06.2021
https://doi.org/10.17678/beuscitech.842132

Abstract

We investigate the effects of potentials with quadrupole and hexadecapole deformations on the elastic scattering angular distributions of deformed projectiles. We calculate the elastic scattering cross-sections of 20Ne + 12C, 22Ne + 12C, 24Mg + 24Mg and 28Si + 27Al reactions by using Deformed Broglia-Winther (1991) (DBW91), Deformed Aage Winther (DAW95) and Deformed Woods-Saxon (DWS) potentials. Then, we perform the calculations for different orientation angles such as θ = 0 and θ = π/2 of deformed projectiles. Finally, we compare the theoretical results together with the experimental data.

References

  • [1] Aygun, M., 2018. Analysis with SDHO and RMF density distributions of elastic scattering cross-sections of oxygen isotopes (16–18O) by various target nuclei. International Journal of Modern Physics E, 27, 1850055.
  • [2] Aygun, M., 2019. Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei. Pramana – Journal of Physics, 93, 72.
  • [3] Aygun, M., Aygun, Z., 2019. Microscopic analysis of elastic scattering cross sections for different densities of 8Li nucleus on light, medium and heavy mass targets. Revista Mexicana de F´ısica, 65, 404-411.
  • [4] Aygun, M., 2018. Alternative Potentials Analyzing the Scattering Cross Sections of 7,9,10,11,12,14Be Isotopes from a 12C target: Proximity Potentials. Journal of the Korean Physical Society, 73, 1255-1262.
  • [5] Aygun, M., 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42, 302-311.
  • [6] Aygun, M., 2018. A Comparison of Proximity Potentials in the Analysis of Heavy-Ion Elastic Cross Sections. Ukrainian Journal of Physics, 63, 881-887.
  • [7] Rashdan, M., Sewailem, Sh. M., 2019. Deformation and orientation effects on reaction cross-sections at intermediate and high energies. International Journal of Modern Physics E, 28, 1950014.
  • [8] Rashdan, M., 2012. Deformation, orientation, and medium effects in 16,19C + C reactions. Physical Review C 86, 044610.
  • [9] Hassan, M.Y.M., Farag, M.Y.H., Abul-Magd, A.Y., Nassar, T.E.I., 2008. Nucleus–nucleus reaction cross sections for deformed nuclei. Physica Scripta,78, 045202.
  • [11] Thompson, I. J., 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7, 167.
  • [12] Möller, P., Sierk, A.J., Ichikawa, T., Sagawac, H., 2016. Nuclear ground-state masses and deformations: FRDM(2012). Atomic Data and Nuclear Data Tables, 109-110, 1-204.
  • [13] Winther, A., 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594, 203-245.
  • [14] Pahlavani, M.R., Alavi, S.A., Tahanipour, N., 2013. Effect of nuclear deformation on the potential barrier and alpha-decay half-lives of superheavy nuclei. Modern Physics Letters A, 28, 16.
  • [15] Wang, N., Scheid, W., 2008. Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Physical Review C, 78, 014607.
  • [16] Bohlen, H.G., Stiliaris, E., Gebauer, B., von Oertzen, W., Wilpert, M., Wilpert, Th., Ostrowski, A., Khoa, D. T., Demyanova, A.S., Ogloblin, A.A., 1993. Refractive scattering and reactions, comparison of two systems:16O+16O and 20Ne+12C. Zeitschrift fur Physik A, 346, 189-200.
  • [17] Al-Abdullah, T., Carstoiu, F., Chen, X., Clark, H. L., Fu, C., Gagliardi, C. A., Lui, Y.-W., Mukhamedzhanov, A., Tabacaru, G., Tokimoto, Y., Trache, L., Tribble, R. E., 2010. Physical Review C, 81, 035802.
Year 2021, , 1 - 5, 13.06.2021
https://doi.org/10.17678/beuscitech.842132

Abstract

References

  • [1] Aygun, M., 2018. Analysis with SDHO and RMF density distributions of elastic scattering cross-sections of oxygen isotopes (16–18O) by various target nuclei. International Journal of Modern Physics E, 27, 1850055.
  • [2] Aygun, M., 2019. Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei. Pramana – Journal of Physics, 93, 72.
  • [3] Aygun, M., Aygun, Z., 2019. Microscopic analysis of elastic scattering cross sections for different densities of 8Li nucleus on light, medium and heavy mass targets. Revista Mexicana de F´ısica, 65, 404-411.
  • [4] Aygun, M., 2018. Alternative Potentials Analyzing the Scattering Cross Sections of 7,9,10,11,12,14Be Isotopes from a 12C target: Proximity Potentials. Journal of the Korean Physical Society, 73, 1255-1262.
  • [5] Aygun, M., 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42, 302-311.
  • [6] Aygun, M., 2018. A Comparison of Proximity Potentials in the Analysis of Heavy-Ion Elastic Cross Sections. Ukrainian Journal of Physics, 63, 881-887.
  • [7] Rashdan, M., Sewailem, Sh. M., 2019. Deformation and orientation effects on reaction cross-sections at intermediate and high energies. International Journal of Modern Physics E, 28, 1950014.
  • [8] Rashdan, M., 2012. Deformation, orientation, and medium effects in 16,19C + C reactions. Physical Review C 86, 044610.
  • [9] Hassan, M.Y.M., Farag, M.Y.H., Abul-Magd, A.Y., Nassar, T.E.I., 2008. Nucleus–nucleus reaction cross sections for deformed nuclei. Physica Scripta,78, 045202.
  • [11] Thompson, I. J., 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7, 167.
  • [12] Möller, P., Sierk, A.J., Ichikawa, T., Sagawac, H., 2016. Nuclear ground-state masses and deformations: FRDM(2012). Atomic Data and Nuclear Data Tables, 109-110, 1-204.
  • [13] Winther, A., 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594, 203-245.
  • [14] Pahlavani, M.R., Alavi, S.A., Tahanipour, N., 2013. Effect of nuclear deformation on the potential barrier and alpha-decay half-lives of superheavy nuclei. Modern Physics Letters A, 28, 16.
  • [15] Wang, N., Scheid, W., 2008. Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Physical Review C, 78, 014607.
  • [16] Bohlen, H.G., Stiliaris, E., Gebauer, B., von Oertzen, W., Wilpert, M., Wilpert, Th., Ostrowski, A., Khoa, D. T., Demyanova, A.S., Ogloblin, A.A., 1993. Refractive scattering and reactions, comparison of two systems:16O+16O and 20Ne+12C. Zeitschrift fur Physik A, 346, 189-200.
  • [17] Al-Abdullah, T., Carstoiu, F., Chen, X., Clark, H. L., Fu, C., Gagliardi, C. A., Lui, Y.-W., Mukhamedzhanov, A., Tabacaru, G., Tokimoto, Y., Trache, L., Tribble, R. E., 2010. Physical Review C, 81, 035802.
There are 16 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Aygun 0000-0002-4276-3511

Publication Date June 13, 2021
Submission Date December 17, 2020
Published in Issue Year 2021

Cite

IEEE M. Aygun, “Influence of deformed potentials on elastic scattering reactions involving deformed projectile-spherical target”, Bitlis Eren University Journal of Science and Technology, vol. 11, no. 1, pp. 1–5, 2021, doi: 10.17678/beuscitech.842132.