Research Article
BibTex RIS Cite
Year 2024, , 56 - 64, 31.03.2024
https://doi.org/10.30516/bilgesci.1423992

Abstract

References

  • Alhayek, H., Svecova, D. (2012). Flexural stiffness and strength of GFRP-reinforced timber beams. Journal of Composites for Construction, 16(3), 245-252. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000261
  • Andor, K., Bellovics, B. (2020). Analysis of modulus of elasticity of spruce beams under bending with and without fibre reinforcement. Wood Research, 65(1), 101-110. https://doi.org/10.37763/wr.1336-4561/65.1.101110
  • Amy, K., Svecova, D. (2004). Strengthening of dapped timber beams using glass fibre reinforced polymer bars. Canadian Journal of Civil Engineering, 31(6), 943-955.
  • Balmori, J. A., Basterra, L. A., Acuña, L. (2020), Internal GFRP reinforcement of low-grade maritime pine duo timber beams. Materials, 13(3), 571. https://doi.org/10.3390/ma13030571
  • Balmori, J. A., Branco, J. M., Basterra, L. A. (2021). Behaviour of the adhesive bond between low-grade wood and GFRP reinforcements using epoxy resin. Construction and Building Materials, 271, 121516 https://doi.org/10.1016/j.conbuildmat.2020.121516
  • Basterra, L. A., Balmori, J. A., Morillas, L., Acuña, L., Casado, M. (2017). Internal reinforcement of laminated duo beams of low-grade timberwith GFRP sheets. Construction and Building Materials, 154, 914–920 https://doi.org/10.1016/j.conbuildmat.2017.08.007
  • Beram, A. (2021). Dünyada ve Türkiye’de Geçmişten Günümüze Ahşap Yapı Sektörü. Ormancılık ve Ziraat Alanında Sürdürülebilirlik Temelli Yaklaşımlar, ed. Beram, A. and Beram-Ceyda, R., 1-14, SRA Academic Publishing, Lithuania.
  • Beram, A. (2023). Evaluating the strength properties of standing trees through fractometry. Eurasian Journal of Forest Science, 11(3), 137-150.
  • Borhan, T. M. (2012). Properties of glass concrete reinforced with short basalt fibre. Materials and Design, 42, 265-271. https://doi.org/10.1016/j.matdes.2012.05.062
  • Bozkurt, A.Y., Erdin, N. (2000). Wood Anatomy. Istanbul University publication number: 4263. Faculty of forestry publication number: 466, Istanbul University Press.
  • Bywalski, C., Drzazga, M., Kaźmierowski, M., Kamiński, M. (2020). Shear behavior of concrete beams reinforced with a new type of glass fiber reinforced polymer reinforcement: experimental study. Materials, 13(5), 1159. https://doi.org/10.3390/ma13051159
  • Carmisciano, S., De Rosa, I. M., Sarasini, F., Tamburrano, A., and Valente, M. (2011). Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Materials and Design, 32(1), 337-342. https://doi.org/10.1016/j.matdes.2010.06.042
  • Camargo, M. V. D., Christoforo, A. L., Barcarolo, L. R. D. V., Moura, J. D. D. M. (2023). Experimental analysis of the performance of doweled connections reinforced with glass-fiber-reinforced polymer (GFRP) in wood pinus spp. Forests, 14(5), 931. https://doi.org/10.3390/f14050931
  • de la Rosa García, P., Escamilla, A. C., García, M. N. G. (2013). Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites Part B: Engineering, 55, 528-536. https://doi.org/10.1016/j.compositesb.2013.07.016
  • Dong, C. (2019). Numerical study of hybrid composites containing basalt fibres under flexural loading. SN Applied Sciences, 1(4), 287.
  • Dorigato, A., Pegoretti, A. (2012). Fatigue resistance of basalt fibers-reinforced laminates. Journal of Composite Materials, 46(15), 1773-1785. https://doi.org/10.1177/0021998311425620
  • Ezika, A. C., Sadiku, E. R., Ray, S. S., Oyeoka, H. C., Ibenta, M. E., Okpechi, V. U. (2023). Wood Fiber-Reinforced Polyester Composite. In Polyester-Based Biocomposites (pp. 137-160). CRC Press.
  • Fernando, D., Frangi, A., Kobel, P. (2016), Behaviour of basalt fibre reinforced polymer strengthened timber laminates under tensile loading. Engineering Structures, 117, 437-456.
  • Fiorelli, J., Dias, A.A. (2003). Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Materials Research, 6 (2), 193-202.
  • Fiore, V. I. N. C. E. N. Z. O., Di Bella, G., Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design, 32(4), 2091-2099. https://doi.org/10.1016/j.matdes.2010.11.043
  • Gao, H., Sun, Y., Jian, J., Dong, Y., Liu, H. (2023). Study on mechanical properties and application in communication pole line engineering of glass fiber reinforced polyurethane composites (GFRP). Case Studies in Construction Materials, 18, e01942. https://doi.org/10.1016/j.cscm.2023.e01942
  • Gentile, C., Svecova, D., Rizkalla, S. H. (2002). Timber beams strengthened with GFRP bars: development and applications. Journal of Composites for Construction, 6(1), 11-20. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11)
  • Gilby, J. (1999). Cooling tower shows end users the benefits of FRP. Reinforced Plastics, 9(43), 34-36.
  • Jiang, H., Zhang, Z., Lin, Z., Gong, X., Guo, H., Wang, H. (2021). Modification of polyurethane sponge filler using medical stones and application in a moving bed biofilm reactor for ex situ remediation of polluted rivers. Journal of Water Process Engineering, 42, 102189. https://doi.org/10.1016/j.jwpe.2021.102189
  • İçel, B., Beram, A. (2016). Non-destructive evaluation methods that can be used for the determination of some properties of historical wooden structures. Turkish Journal of Forestry, 17(2), 201-207.
  • Karaman, A. (2021). Bending moment resistance of T-type joints reinforced with basalt and glass woven fabric materials. Maderas. Ciencia y tecnología, 23, 1-12. https://www.scielo.cl/scielo.php?pid=S0718-221X2021000100444andscript=sci_arttextandtlng=en
  • Lopresto, V., Leone, C., De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723. https://doi.org/10.1016/j.compositesb.2011.01.030
  • Mohamed, H. M., Masmoudi, R. (2011). Deflection prediction of steel and FRP-reinforced concrete-filled FRP tube beams. Journal of Composites for Construction, 15(3), 462-472. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000172 Monaldo, E., Nerilli, F., Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246-263. https://doi.org/10.1016/j.compstruct.2019.02.002
  • Morales-Conde, M. J., Rodríguez-Liñán, C., Rubio-de Hita, P. (2015), Bending and shear reinforcements for timber beams using GFRP plates. Construction and Building Materials, 96, 461-472. https://doi.org/10.1016/j.conbuildmat.2015.07.079
  • O'Ceallaigh, C., Sikora, K., McPolin, D., Harte, A. M. (2019). The mechano-sorptive creep behaviour of basalt FRP reinforced timber elements in a variable climate. Engineering Structures, 200, 109702. https://doi.org/10.1016/j.engstruct.2019.109702
  • Osmannezhad, S., Faezipour, M., Ebrahimi, G. (2014). Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Construction and Building Materials, 51, 34-39. https://doi.org/10.1016/j.conbuildmat.2013.10.035
  • Passos, A. C., Arouche, M. M., Aguiar, R. A. A., Costa, H. R. M., de Barros, S., Sampaio, E. M. (2021). Adhesion of epoxy and polyurethane adhesives in pultruded composite material. Journal of Advanced Joining Processes, 3, 100045. https://doi.org/10.1016/j.jajp.2021.100045
  • Saad, K., Lengyel, A. (2022). Strengthening timber structural members with CFRP and GFRP: A state-of-the-art review. Polymers, 14(12), 2381. https://doi.org/10.3390/polym14122381
  • Shekarchi, M., Vatani Oskouei, A., Raftery, G.M. (2020). Flexural behavior of timber beams strengthened with pultruded glass fiber reinforced polymer profiles. Composite Structures, 241,112062. https://doi.org/10.1016/j.compstruct.2020.112062
  • TS 2470. (1976). For Physical and Mechanical Experiments in Wood Sampling Methods and General Features Test. Institute of Turkish Standards, Ankara, Türkiye.
  • Valentino, P., Sgambitterra, E., Furgiuele, F., Romano, M., Ehrlich, I., Gebbeken, N. (2014). Mechanical characterization of basalt woven fabric composites: numerical and experimental investigation. Frattura ed Integrità Strutturale, 8(28), 1-11. https://doi.org/10.3221/IGF-ESIS.28.01
  • Wang, X., Wu, Z., Wu, G., Zhu, H., Zen, F. (2013). Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Composites Part B: Engineering, 44(1), 184-192. https://doi.org/10.1016/j.compositesb.2012.06.001
  • Wang, B., Bachtiar, E. V., Yan, L., Kasal, B., Fiore, V. (2019), Flax, basalt, E-Glass FRP and their hybrid FRP strengthened wood beams: An experimental study. Polymers, 11(8), 1255. https://doi.org/10.3390/polym11081255
  • Wei, B., Cao, H., Song, S. (2011). Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corrosion Science, 53(1), 426-431. https://doi.org/10.1016/j.corsci.2010.09.053
  • Wei, B., Cao, H., Song, S. (2010). Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials and Design, 31(9), 4244-4250. https://doi.org/10.1016/j.matdes.2010.04.009
  • Wu, Z., Wang, X., Wu, G. (2009, July). Basalt FRP composite as reinforcements in infrastructure. In Proc., 17th International Conference on Composites/Nano Engineering (ICCE-17) (pp. 21-24), New Orleans.
  • Wu, Z., Wang, X., Iwashita, K., Sasaki, T., Hamaguchi, Y. (2010). Tensile fatigue behaviour of FRP and hybrid FRP sheets. Composites Part B: Engineering, 41(5), 396-402. https://doi.org/10.1016/j.compositesb.2010.02.001
  • Yang, Y., Fahmy, M. F., Guan, S., Pan, Z., Zhan, Y., Zhao, T. (2020). Properties and applications of FRP cable on long-span cable-supported bridges: A review. Composites Part B: Engineering, 190, 107934. https://doi.org/10.1016/j.compositesb.2020.107934
  • Yusof, A., Saleh, A. L. (2010). Flexural strengthening of timber beams using glass fibre reinforced polymer. Electronic Journal of Structural Engineering, 10, 45-56. https://doi.org/10.56748/ejse.10124

Determination of Bending Moment Resistance of L-Type Doweled Joints Reinforced With Glass-Fiber-Reinforced Polymer Woven Fabrics (GFRPWF) and Basalt-Fiber-Reinforced Polymer Woven Fabrics (BFRPWF)

Year 2024, , 56 - 64, 31.03.2024
https://doi.org/10.30516/bilgesci.1423992

Abstract

In this study investigated the bending moment resistance of L-type doweled joints reinforced with glass-fiber-reinforced polymer woven fabrics (GFRPWF) and basalt-fiber-reinforced polymer woven fabrics (BFRPWF). Dowels produced from Scots pine, oak, beech and chestnut wood were used in the doweled joints. While the GFRPWF and BFRPWF were fixed with epoxy adhesive, the dowels were fixed with polyvinyl acetate (PVAc-D3/D4) glue. Test were carried out to determine the bending moment resistance of doweled joints. Experimental results showed that joints connected with oak dowel has been the highest bending moment resistance, and the joints of Scots pine dowel has been the weakest bending moment resistance. The bending moment resistance of oak dowel was approximately 23%, 33%, and 61% higher than for joints constructed with beech, Chestnut and Scots pine, respectively. The bending moment resistance value reinforced with the BFRPWF (55.62 N.m), and the lowest was in unreinforced joints (32.06 N.m). The mean bending moment resistance of reinforced joints (GFRPWF, BFRPWF) was 31% and 74% higher than unreinforced samples (control), respectively. In general, it has been found that the bending moment resistance of doweled joints is influenced by wooden dowel species and FRP types.

References

  • Alhayek, H., Svecova, D. (2012). Flexural stiffness and strength of GFRP-reinforced timber beams. Journal of Composites for Construction, 16(3), 245-252. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000261
  • Andor, K., Bellovics, B. (2020). Analysis of modulus of elasticity of spruce beams under bending with and without fibre reinforcement. Wood Research, 65(1), 101-110. https://doi.org/10.37763/wr.1336-4561/65.1.101110
  • Amy, K., Svecova, D. (2004). Strengthening of dapped timber beams using glass fibre reinforced polymer bars. Canadian Journal of Civil Engineering, 31(6), 943-955.
  • Balmori, J. A., Basterra, L. A., Acuña, L. (2020), Internal GFRP reinforcement of low-grade maritime pine duo timber beams. Materials, 13(3), 571. https://doi.org/10.3390/ma13030571
  • Balmori, J. A., Branco, J. M., Basterra, L. A. (2021). Behaviour of the adhesive bond between low-grade wood and GFRP reinforcements using epoxy resin. Construction and Building Materials, 271, 121516 https://doi.org/10.1016/j.conbuildmat.2020.121516
  • Basterra, L. A., Balmori, J. A., Morillas, L., Acuña, L., Casado, M. (2017). Internal reinforcement of laminated duo beams of low-grade timberwith GFRP sheets. Construction and Building Materials, 154, 914–920 https://doi.org/10.1016/j.conbuildmat.2017.08.007
  • Beram, A. (2021). Dünyada ve Türkiye’de Geçmişten Günümüze Ahşap Yapı Sektörü. Ormancılık ve Ziraat Alanında Sürdürülebilirlik Temelli Yaklaşımlar, ed. Beram, A. and Beram-Ceyda, R., 1-14, SRA Academic Publishing, Lithuania.
  • Beram, A. (2023). Evaluating the strength properties of standing trees through fractometry. Eurasian Journal of Forest Science, 11(3), 137-150.
  • Borhan, T. M. (2012). Properties of glass concrete reinforced with short basalt fibre. Materials and Design, 42, 265-271. https://doi.org/10.1016/j.matdes.2012.05.062
  • Bozkurt, A.Y., Erdin, N. (2000). Wood Anatomy. Istanbul University publication number: 4263. Faculty of forestry publication number: 466, Istanbul University Press.
  • Bywalski, C., Drzazga, M., Kaźmierowski, M., Kamiński, M. (2020). Shear behavior of concrete beams reinforced with a new type of glass fiber reinforced polymer reinforcement: experimental study. Materials, 13(5), 1159. https://doi.org/10.3390/ma13051159
  • Carmisciano, S., De Rosa, I. M., Sarasini, F., Tamburrano, A., and Valente, M. (2011). Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Materials and Design, 32(1), 337-342. https://doi.org/10.1016/j.matdes.2010.06.042
  • Camargo, M. V. D., Christoforo, A. L., Barcarolo, L. R. D. V., Moura, J. D. D. M. (2023). Experimental analysis of the performance of doweled connections reinforced with glass-fiber-reinforced polymer (GFRP) in wood pinus spp. Forests, 14(5), 931. https://doi.org/10.3390/f14050931
  • de la Rosa García, P., Escamilla, A. C., García, M. N. G. (2013). Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites Part B: Engineering, 55, 528-536. https://doi.org/10.1016/j.compositesb.2013.07.016
  • Dong, C. (2019). Numerical study of hybrid composites containing basalt fibres under flexural loading. SN Applied Sciences, 1(4), 287.
  • Dorigato, A., Pegoretti, A. (2012). Fatigue resistance of basalt fibers-reinforced laminates. Journal of Composite Materials, 46(15), 1773-1785. https://doi.org/10.1177/0021998311425620
  • Ezika, A. C., Sadiku, E. R., Ray, S. S., Oyeoka, H. C., Ibenta, M. E., Okpechi, V. U. (2023). Wood Fiber-Reinforced Polyester Composite. In Polyester-Based Biocomposites (pp. 137-160). CRC Press.
  • Fernando, D., Frangi, A., Kobel, P. (2016), Behaviour of basalt fibre reinforced polymer strengthened timber laminates under tensile loading. Engineering Structures, 117, 437-456.
  • Fiorelli, J., Dias, A.A. (2003). Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Materials Research, 6 (2), 193-202.
  • Fiore, V. I. N. C. E. N. Z. O., Di Bella, G., Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design, 32(4), 2091-2099. https://doi.org/10.1016/j.matdes.2010.11.043
  • Gao, H., Sun, Y., Jian, J., Dong, Y., Liu, H. (2023). Study on mechanical properties and application in communication pole line engineering of glass fiber reinforced polyurethane composites (GFRP). Case Studies in Construction Materials, 18, e01942. https://doi.org/10.1016/j.cscm.2023.e01942
  • Gentile, C., Svecova, D., Rizkalla, S. H. (2002). Timber beams strengthened with GFRP bars: development and applications. Journal of Composites for Construction, 6(1), 11-20. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11)
  • Gilby, J. (1999). Cooling tower shows end users the benefits of FRP. Reinforced Plastics, 9(43), 34-36.
  • Jiang, H., Zhang, Z., Lin, Z., Gong, X., Guo, H., Wang, H. (2021). Modification of polyurethane sponge filler using medical stones and application in a moving bed biofilm reactor for ex situ remediation of polluted rivers. Journal of Water Process Engineering, 42, 102189. https://doi.org/10.1016/j.jwpe.2021.102189
  • İçel, B., Beram, A. (2016). Non-destructive evaluation methods that can be used for the determination of some properties of historical wooden structures. Turkish Journal of Forestry, 17(2), 201-207.
  • Karaman, A. (2021). Bending moment resistance of T-type joints reinforced with basalt and glass woven fabric materials. Maderas. Ciencia y tecnología, 23, 1-12. https://www.scielo.cl/scielo.php?pid=S0718-221X2021000100444andscript=sci_arttextandtlng=en
  • Lopresto, V., Leone, C., De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723. https://doi.org/10.1016/j.compositesb.2011.01.030
  • Mohamed, H. M., Masmoudi, R. (2011). Deflection prediction of steel and FRP-reinforced concrete-filled FRP tube beams. Journal of Composites for Construction, 15(3), 462-472. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000172 Monaldo, E., Nerilli, F., Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246-263. https://doi.org/10.1016/j.compstruct.2019.02.002
  • Morales-Conde, M. J., Rodríguez-Liñán, C., Rubio-de Hita, P. (2015), Bending and shear reinforcements for timber beams using GFRP plates. Construction and Building Materials, 96, 461-472. https://doi.org/10.1016/j.conbuildmat.2015.07.079
  • O'Ceallaigh, C., Sikora, K., McPolin, D., Harte, A. M. (2019). The mechano-sorptive creep behaviour of basalt FRP reinforced timber elements in a variable climate. Engineering Structures, 200, 109702. https://doi.org/10.1016/j.engstruct.2019.109702
  • Osmannezhad, S., Faezipour, M., Ebrahimi, G. (2014). Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Construction and Building Materials, 51, 34-39. https://doi.org/10.1016/j.conbuildmat.2013.10.035
  • Passos, A. C., Arouche, M. M., Aguiar, R. A. A., Costa, H. R. M., de Barros, S., Sampaio, E. M. (2021). Adhesion of epoxy and polyurethane adhesives in pultruded composite material. Journal of Advanced Joining Processes, 3, 100045. https://doi.org/10.1016/j.jajp.2021.100045
  • Saad, K., Lengyel, A. (2022). Strengthening timber structural members with CFRP and GFRP: A state-of-the-art review. Polymers, 14(12), 2381. https://doi.org/10.3390/polym14122381
  • Shekarchi, M., Vatani Oskouei, A., Raftery, G.M. (2020). Flexural behavior of timber beams strengthened with pultruded glass fiber reinforced polymer profiles. Composite Structures, 241,112062. https://doi.org/10.1016/j.compstruct.2020.112062
  • TS 2470. (1976). For Physical and Mechanical Experiments in Wood Sampling Methods and General Features Test. Institute of Turkish Standards, Ankara, Türkiye.
  • Valentino, P., Sgambitterra, E., Furgiuele, F., Romano, M., Ehrlich, I., Gebbeken, N. (2014). Mechanical characterization of basalt woven fabric composites: numerical and experimental investigation. Frattura ed Integrità Strutturale, 8(28), 1-11. https://doi.org/10.3221/IGF-ESIS.28.01
  • Wang, X., Wu, Z., Wu, G., Zhu, H., Zen, F. (2013). Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Composites Part B: Engineering, 44(1), 184-192. https://doi.org/10.1016/j.compositesb.2012.06.001
  • Wang, B., Bachtiar, E. V., Yan, L., Kasal, B., Fiore, V. (2019), Flax, basalt, E-Glass FRP and their hybrid FRP strengthened wood beams: An experimental study. Polymers, 11(8), 1255. https://doi.org/10.3390/polym11081255
  • Wei, B., Cao, H., Song, S. (2011). Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corrosion Science, 53(1), 426-431. https://doi.org/10.1016/j.corsci.2010.09.053
  • Wei, B., Cao, H., Song, S. (2010). Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials and Design, 31(9), 4244-4250. https://doi.org/10.1016/j.matdes.2010.04.009
  • Wu, Z., Wang, X., Wu, G. (2009, July). Basalt FRP composite as reinforcements in infrastructure. In Proc., 17th International Conference on Composites/Nano Engineering (ICCE-17) (pp. 21-24), New Orleans.
  • Wu, Z., Wang, X., Iwashita, K., Sasaki, T., Hamaguchi, Y. (2010). Tensile fatigue behaviour of FRP and hybrid FRP sheets. Composites Part B: Engineering, 41(5), 396-402. https://doi.org/10.1016/j.compositesb.2010.02.001
  • Yang, Y., Fahmy, M. F., Guan, S., Pan, Z., Zhan, Y., Zhao, T. (2020). Properties and applications of FRP cable on long-span cable-supported bridges: A review. Composites Part B: Engineering, 190, 107934. https://doi.org/10.1016/j.compositesb.2020.107934
  • Yusof, A., Saleh, A. L. (2010). Flexural strengthening of timber beams using glass fibre reinforced polymer. Electronic Journal of Structural Engineering, 10, 45-56. https://doi.org/10.56748/ejse.10124
There are 44 citations in total.

Details

Primary Language English
Subjects Wood Processing
Journal Section Research Articles
Authors

Abdurrahman Karaman 0000-0002-5925-7519

Early Pub Date March 31, 2024
Publication Date March 31, 2024
Submission Date January 22, 2024
Acceptance Date March 13, 2024
Published in Issue Year 2024

Cite

APA Karaman, A. (2024). Determination of Bending Moment Resistance of L-Type Doweled Joints Reinforced With Glass-Fiber-Reinforced Polymer Woven Fabrics (GFRPWF) and Basalt-Fiber-Reinforced Polymer Woven Fabrics (BFRPWF). Bilge International Journal of Science and Technology Research, 8(1), 56-64. https://doi.org/10.30516/bilgesci.1423992