Research Article
BibTex RIS Cite

Phytochemical Profile And Antioxidant Activities Of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric) Rhizomes

Year 2021, , 1 - 6, 31.12.2021
https://doi.org/10.30516/bilgesci.991202

Abstract

The aim of our study was to evaluate and collate the chemical constituents and antioxidant properties of dry rhizomes of Ginger and dry rhizomes of Turmeric. The assay for quantification of the phenolic compounds in the samples was carried out using the reversed phase-high performance liquid chromatography (RP-HPLC). To determine mineral components in samples inductively coupled plasma optical out flow spectroscopy (ICP-OES) procedure was applied. The most abundant phenolic components in turmeric rhizomes are ferulic acid (93.59 mg), benzoic acid (40.09 mg), vanillin (26.69 mg) and p-coumaric acid (23.25mg) respectively. On the other hand, the most common phenolic components in ginger rhizomes are Benzoic acid (33.31mg), Ferulic acid (11.41 mg) and vanillin (11.83 mg). In addition, ethanolic extract ginger (EEG) and ethanolic extract turmeric (EET) had an effective DPPH• scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power activities. According to ICP-OES analysis results of rhizomes and extracts, the potassium was, quantitatively, the most abundant mineral in samples. Subsequently, sodium, magnesium, phosphorus and calcium were identified, respectively.

References

  • Abuja, P. M., Albertini, R. (2001). Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta, 306 (1-2),1-17.
  • Ak, T., Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27-37.
  • Asghari, G., Mostajeran, A., Shebli, M. (2010). Curcuminoid and essential oil components of turmeric at different stages of growth cultivated in Iran. Research in Pharmaceutical Sciences, 4(1), 55-61.
  • Bagchi, A. (2012). Extraction of curcumin. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 1, 1-16.
  • Baydar, H. A. S. A. N., Özkan, G., Erbaş, S., Altındal, D. (2007, April). Yield, chemical composition and antioxidant properties of extracts and essential oils of sage and rosemary depending on seasonal variations. In I International Medicinal and Aromatic Plants Conference on Culinary Herbs 826 (pp. 383-390.
  • Benkeblia, N. (2005). Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Archives of Biology and Technologyl, 48, 753-759.
  • Benzie, I. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chemistry, 64(2), 203-209.
  • Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 217(2-3), 213-220.
  • Erdoğan, Ü., Homan Gökçe, E. (2021). Fig Seed Oil Loaded Nanostructured Lipid Carriers: Evaluation of the Protective Effects Against Oxidation. Journal of Food Processing and Preservation, e15835.
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33-50.
  • Huei-Chen, H., Tong-Rong, J., & Sheau-Farn, Y. (1992). Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. European Journal of Pharmacology, 221(2-3), 381-384.
  • Kopáni, M., Celec, P., Danišovič, L., Michalka, P., Biró, C. (2006). Oxidative stress and electron spin resonance. Clinica Chimica Acta, 364(1-2), 61-66.
  • Kumar, S., Lemos, M., Sharma, M., Shriram, V. (2011). Free radicals and antioxidants. Advances in Applied Science Research, 2(1), 129-35.
  • Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50(12), 3444-3452.
  • Mohan, V. R., LINCY, M. P., DEVI, G. S. (2015). Evaluation of phenolic and flavonoid contents and antioxidant activity of various solvent extracts of Cadaba indica lam. International Journal of Advances in Pharmaceutical Sciences, 6(3), 2849-2853.
  • Mushtaq, Z., Tahir Nadeem, M., Arshad, M. U., Saeed, F., Ahmed, M. H., Bader Ul Ain, H., ... Hussain, S. (2019). Exploring the biochemical and antioxidant potential of ginger (Adric) and turmeric (Haldi). International Journal of Food Properties, 22(1), 1642-1651.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.
  • Ozcelik, B., Lee, J. H., & Min, D. B. (2003). Effects of Light, Oxygen, and pH on the Absorbance of 2, 2‐Diphenyl‐1‐picrylhydrazyl. Journal of Food Science, 68(2), 487-490.
  • Ruch, R. J., Cheng, S. J., Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003-1008.
  • Slinkard, K., Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
  • Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S., Rojsitthisak, P. (2009). A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochemical Analysis, 20(4), 314-319.

Zencefil ve Zerdeçal Rizomlarının Fitokimyasal Profili ve Antioksidan Aktiviteleri

Year 2021, , 1 - 6, 31.12.2021
https://doi.org/10.30516/bilgesci.991202

Abstract

Çalışmamızın amacı, Zencefilin kuru rizomlarının ve Zerdeçal'ın kuru rizomlarının kimyasal bileşenlerini ve antioksidan özelliklerini değerlendirmek ve harmanlamaktı. Numunelerdeki fenolik bileşiklerin miktar tayini analizi, ters fazlı yüksek performanslı sıvı kromatografisi (RP-HPLC) kullanılarak gerçekleştirilmiştir. Örneklerdeki mineral bileşenlerini belirlemek için endüktif olarak eşleştirilmiş plazma optik çıkış akış spektroskopisi (ICP-OES) prosedürü uygulandı. Zerdeçal rizomlarında en fazla bulunan fenolik bileşenler sırasıyla ferulik asit (93.59 mg), benzoik asit (40.09 mg), vanilin (26.69 mg) ve p-kumarik asittir (23.25 mg). Öte yandan zencefil rizomlarındaki en yaygın fenolik bileşenler Benzoik asit (33.31 mg), Ferulik asit (11.41 mg) ve vanilindir (11.83 mg). Ek olarak, etanolik zencefil özütü (EEG) ve etanolik zerdeçal özütü (EET), etkili bir DPPH• süpürme, hidrojen peroksit süpürme, demir iyonları (Fe3+) azaltıcı güç aktivitelerine sahipti. Rizomların ve etanolik ekstraktların ICP-OES analiz sonuçlarına göre, potasyum kantitatif olarak numunelerde en bol bulunan mineraldi. Daha sonra sırasıyla sodyum, magnezyum, fosfor ve kalsiyum tespit edilmiştir.

References

  • Abuja, P. M., Albertini, R. (2001). Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta, 306 (1-2),1-17.
  • Ak, T., Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27-37.
  • Asghari, G., Mostajeran, A., Shebli, M. (2010). Curcuminoid and essential oil components of turmeric at different stages of growth cultivated in Iran. Research in Pharmaceutical Sciences, 4(1), 55-61.
  • Bagchi, A. (2012). Extraction of curcumin. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 1, 1-16.
  • Baydar, H. A. S. A. N., Özkan, G., Erbaş, S., Altındal, D. (2007, April). Yield, chemical composition and antioxidant properties of extracts and essential oils of sage and rosemary depending on seasonal variations. In I International Medicinal and Aromatic Plants Conference on Culinary Herbs 826 (pp. 383-390.
  • Benkeblia, N. (2005). Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Archives of Biology and Technologyl, 48, 753-759.
  • Benzie, I. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chemistry, 64(2), 203-209.
  • Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 217(2-3), 213-220.
  • Erdoğan, Ü., Homan Gökçe, E. (2021). Fig Seed Oil Loaded Nanostructured Lipid Carriers: Evaluation of the Protective Effects Against Oxidation. Journal of Food Processing and Preservation, e15835.
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33-50.
  • Huei-Chen, H., Tong-Rong, J., & Sheau-Farn, Y. (1992). Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. European Journal of Pharmacology, 221(2-3), 381-384.
  • Kopáni, M., Celec, P., Danišovič, L., Michalka, P., Biró, C. (2006). Oxidative stress and electron spin resonance. Clinica Chimica Acta, 364(1-2), 61-66.
  • Kumar, S., Lemos, M., Sharma, M., Shriram, V. (2011). Free radicals and antioxidants. Advances in Applied Science Research, 2(1), 129-35.
  • Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50(12), 3444-3452.
  • Mohan, V. R., LINCY, M. P., DEVI, G. S. (2015). Evaluation of phenolic and flavonoid contents and antioxidant activity of various solvent extracts of Cadaba indica lam. International Journal of Advances in Pharmaceutical Sciences, 6(3), 2849-2853.
  • Mushtaq, Z., Tahir Nadeem, M., Arshad, M. U., Saeed, F., Ahmed, M. H., Bader Ul Ain, H., ... Hussain, S. (2019). Exploring the biochemical and antioxidant potential of ginger (Adric) and turmeric (Haldi). International Journal of Food Properties, 22(1), 1642-1651.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.
  • Ozcelik, B., Lee, J. H., & Min, D. B. (2003). Effects of Light, Oxygen, and pH on the Absorbance of 2, 2‐Diphenyl‐1‐picrylhydrazyl. Journal of Food Science, 68(2), 487-490.
  • Ruch, R. J., Cheng, S. J., Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003-1008.
  • Slinkard, K., Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
  • Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S., Rojsitthisak, P. (2009). A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochemical Analysis, 20(4), 314-319.
There are 23 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Ümit Erdoğan 0000-0002-6627-4472

Sabri Erbaş 0000-0003-0691-6127

Publication Date December 31, 2021
Acceptance Date November 22, 2021
Published in Issue Year 2021

Cite

APA Erdoğan, Ü., & Erbaş, S. (2021). Phytochemical Profile And Antioxidant Activities Of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric) Rhizomes. Bilge International Journal of Science and Technology Research, 5(Özel Sayı), 1-6. https://doi.org/10.30516/bilgesci.991202