Research Article
BibTex RIS Cite

Optimization of Composite Couplings in Helicopter Rotor Blade Spar Using Hybrid Particle Swarm-Gradient Algorithm

Year 2017, Volume: 1 Issue: 2, 71 - 78, 30.11.2017

Abstract

Modern helicopter rotor blades are made of advanced
composite material due to higher stiffness/mass ratio, superior fatigue
characteristic along with capability of aeroelastic tailoring. In
composite materials, circumferentially uniform stiffness (CUS) and
circumferentially asymmetric stiffness (CAS) layup
configurations, which offer convenience in terms of production methods,
are widely used in the design of fiber angles. However, it is desirable to
optimize the results by examining the couplings to test better results can
be achieved with effective modifications to the fibers without CUS and
CAS. It is a fact that gradient-based optimization
algorithms were quite popular in the years when computers
had not been so powerful yet. But the nature of the gradient-based
algorithms, they can provide local optimum. When the gradian based
classical methods are tested, the results are the same as the CUS and
CAS distributions. Also, the hybrid particle swarm-gradient
algorithm by means of C#, VABS, Abaqus, MATLAB proposes
better results on the composite couplings of blade spar such as
extension-torsion, lead-lag torsion and flap-torsion.

References

  • Apalak, M.K., Karaboğa, D., Akay, B. (2014). The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates. Engineering Optimization, 46(3), 420-437.
  • Banos, R., Manzano-Agugliaro, F., Montoya, F.G., Gil, C., Alcayde, A., Gómez. J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renew­able and Sustainable Energy Reviews, 15(4), 1753–1766.
  • Berdichevsky, V., Armanios, E., Badir, A. (1992) Theory of anisotropic thin-walled closed-cross-section beams. Composites Engineering, 2(5-7), 411-432.
  • Beshay, G.E., Maalawi, K.Y., Abdrabbo, S.M., Khalifa, T.A. (2015). Dynamic optimization of thin-walled composite blades of wind turbines. World Applied Sciences Journal, 33(3), 525-535.
  • Bert, C.W. (1977). Optimal design of a composite-material plate to maximize its fundamental frequency. Journal of Sound and Vibration, 50(2), 229–237.
  • Chun, H.J., Park, M. J., Byun, J.H. (2006). Behaviors of CAS and CUS thick-walled channel composite beams. International Journal of Modern Physics B, 20(25), 4016-4021.
  • Fu, Y., Xiong, J., Luo, C., Yun, X. (2015). Static mechanical properties of hybrid RTM-made composite I- and Π-beams under three-point flexure. Chinese Journal of Aeronautics, 28(3), 903-913.
  • Ganguli, R. (2013). Optimal design of composite Structures: a historical review. Journal of the Indian Institute of Science, 93(4), 557-570.
  • Glaz, B., Friedmann, P.P., Liu, L. (2006). Efficient global optimization of helicopter rotor blades for vibration reduction in forward flight. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Virginia, USA.
  • Khot, N.S., Venkayya, V.B., Johnson, C.D., Tischler, V.A. (1973). Optimization of fiber reinforced com­posite structures. International Journal of Solids and Structures, 9(10), 1225–1236.
  • Kodiyalam, K., Nagendra, S., DeSte­fano, J. (1996). Composite sandwich structure optimization with application to satellite components. AIAA Journal, 34(3), 614-621.
  • Kovalovs, A., Barkanov, E., Gluhihs, S. (2007). Numerical optimization of helicopter rotor blade design for active twist control. Aviation, 11(3), 3-9.
  • Nagendra, S., Jestin, D., Gürdal, Z., Haftka, R.T., Watson, L.T. (1996). Improved genetic algo­rithm for the design of stiffened composite panels. Com­puters & Structures, 58(3), 543-555.
  • Nshanian, Y.S., Pappas, M. (1983). Optimal laminated com­posite shells for buckling and vibration. AIAA Journal, 21(3), 430-437.
  • Rehfield, L.W., Atilgan, A.R. (1989) Toward understanding the tailoring mechanisms for thin-walled composite tubular beams. The First USSR–U.S. Symposium on Mechanics of Composite Materials, Riga, Latvia.
  • Sarangapani, G., Ganguli, R. (2013). Effect of ply-level material uncertainty on composite elastic couplings in laminated plates. International Journal for Computa­tional Methods in Engineering Science and Mechanics, 14(3), 244–261.
  • Satheesh, R., Naik, G.N., Ganguli, R. (2009) Conservative design optimization of laminated com­posite structures using genetic algorithms and multiple failure criteria. Journal of Composite Materials, 44(3), 369-387.
  • Schmit, L.A., Fleury, C. (1980). Discrete-continuous variable structural synthesis using dual methods. AIAA Journal, 18(12), 1515-1524.
  • Starnes, J.H.H., Haftka, R.T. (1979). Preliminary design of composite wings for buckling, strength, and dis­placement constraints. Journal of Aircraft, 16(8), 564–570.
  • Venter, G., Haftka, R.T., Starnes, F.H. (1998). Construction of response surface approximations for design optimization. AIAA Journal, 36(12), 2242-2249.
  • Warminski, J., Latalski, J., Szmit, Z. (2014) Coupled flexural-torsional vibrations of a composite beam attached to a rotating hub. 9th International Conference on Structural Dynamics, Porto, Portugal.
  • Williams, E. (2017) Composite Materials and Helicopter Rotor Blades. http://classroom.materials.ac.uk/caseRoto.php (Accessed on 05 July 2017).
  • Yu, W. (2013). VABS's User Manual. Utah State University, Logan, USA
Year 2017, Volume: 1 Issue: 2, 71 - 78, 30.11.2017

Abstract

References

  • Apalak, M.K., Karaboğa, D., Akay, B. (2014). The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates. Engineering Optimization, 46(3), 420-437.
  • Banos, R., Manzano-Agugliaro, F., Montoya, F.G., Gil, C., Alcayde, A., Gómez. J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renew­able and Sustainable Energy Reviews, 15(4), 1753–1766.
  • Berdichevsky, V., Armanios, E., Badir, A. (1992) Theory of anisotropic thin-walled closed-cross-section beams. Composites Engineering, 2(5-7), 411-432.
  • Beshay, G.E., Maalawi, K.Y., Abdrabbo, S.M., Khalifa, T.A. (2015). Dynamic optimization of thin-walled composite blades of wind turbines. World Applied Sciences Journal, 33(3), 525-535.
  • Bert, C.W. (1977). Optimal design of a composite-material plate to maximize its fundamental frequency. Journal of Sound and Vibration, 50(2), 229–237.
  • Chun, H.J., Park, M. J., Byun, J.H. (2006). Behaviors of CAS and CUS thick-walled channel composite beams. International Journal of Modern Physics B, 20(25), 4016-4021.
  • Fu, Y., Xiong, J., Luo, C., Yun, X. (2015). Static mechanical properties of hybrid RTM-made composite I- and Π-beams under three-point flexure. Chinese Journal of Aeronautics, 28(3), 903-913.
  • Ganguli, R. (2013). Optimal design of composite Structures: a historical review. Journal of the Indian Institute of Science, 93(4), 557-570.
  • Glaz, B., Friedmann, P.P., Liu, L. (2006). Efficient global optimization of helicopter rotor blades for vibration reduction in forward flight. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Virginia, USA.
  • Khot, N.S., Venkayya, V.B., Johnson, C.D., Tischler, V.A. (1973). Optimization of fiber reinforced com­posite structures. International Journal of Solids and Structures, 9(10), 1225–1236.
  • Kodiyalam, K., Nagendra, S., DeSte­fano, J. (1996). Composite sandwich structure optimization with application to satellite components. AIAA Journal, 34(3), 614-621.
  • Kovalovs, A., Barkanov, E., Gluhihs, S. (2007). Numerical optimization of helicopter rotor blade design for active twist control. Aviation, 11(3), 3-9.
  • Nagendra, S., Jestin, D., Gürdal, Z., Haftka, R.T., Watson, L.T. (1996). Improved genetic algo­rithm for the design of stiffened composite panels. Com­puters & Structures, 58(3), 543-555.
  • Nshanian, Y.S., Pappas, M. (1983). Optimal laminated com­posite shells for buckling and vibration. AIAA Journal, 21(3), 430-437.
  • Rehfield, L.W., Atilgan, A.R. (1989) Toward understanding the tailoring mechanisms for thin-walled composite tubular beams. The First USSR–U.S. Symposium on Mechanics of Composite Materials, Riga, Latvia.
  • Sarangapani, G., Ganguli, R. (2013). Effect of ply-level material uncertainty on composite elastic couplings in laminated plates. International Journal for Computa­tional Methods in Engineering Science and Mechanics, 14(3), 244–261.
  • Satheesh, R., Naik, G.N., Ganguli, R. (2009) Conservative design optimization of laminated com­posite structures using genetic algorithms and multiple failure criteria. Journal of Composite Materials, 44(3), 369-387.
  • Schmit, L.A., Fleury, C. (1980). Discrete-continuous variable structural synthesis using dual methods. AIAA Journal, 18(12), 1515-1524.
  • Starnes, J.H.H., Haftka, R.T. (1979). Preliminary design of composite wings for buckling, strength, and dis­placement constraints. Journal of Aircraft, 16(8), 564–570.
  • Venter, G., Haftka, R.T., Starnes, F.H. (1998). Construction of response surface approximations for design optimization. AIAA Journal, 36(12), 2242-2249.
  • Warminski, J., Latalski, J., Szmit, Z. (2014) Coupled flexural-torsional vibrations of a composite beam attached to a rotating hub. 9th International Conference on Structural Dynamics, Porto, Portugal.
  • Williams, E. (2017) Composite Materials and Helicopter Rotor Blades. http://classroom.materials.ac.uk/caseRoto.php (Accessed on 05 July 2017).
  • Yu, W. (2013). VABS's User Manual. Utah State University, Logan, USA
There are 23 citations in total.

Details

Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Hacer Arıol Taymaz

Publication Date November 30, 2017
Acceptance Date October 30, 2017
Published in Issue Year 2017 Volume: 1 Issue: 2

Cite

APA Arıol Taymaz, H. (2017). Optimization of Composite Couplings in Helicopter Rotor Blade Spar Using Hybrid Particle Swarm-Gradient Algorithm. Bilge International Journal of Science and Technology Research, 1(2), 71-78.