Dört Teker Tahrikli Mobil Robotun Gövde Hızı ve Yönelme Açısısının Kesir Dereceli Kayan Kipli Kontrolcü ile Kontrolü
Year 2017,
Volume: 1 Special Issue, 38 - 46, 25.12.2017
Kamil Orman
,
Adnan Derdiyok
Abstract
Bu
çalışmada dört teker tahrikli mobil robotun (4TT MR) gövde hızı ve yönelme
açısının kontrolü için Kesir Dereceli Kayan Kipli Kontrolcü (KDKKK) yapısı
benzetim ortamında test edilmiştir. Mobil robotun gövde hızı ve yönelme açısı
her bir motorun açısal hızı kullanılarak hesaplanmaktadır. Tasarlanacak olan
KDKKK ile mobil robotun yörünge izleme ve konum kararlılığı için her bir motorun
tork işareti üretilecektir. KDKKK’nün performansını kıyaslamak için aynı
referanslar kullanılarak mobil robota parametreleri iyi ayarlanmış bir PI
kontrolcü de uygulanmıştır. Benzetim sonuçları KDKKK’nün geleneksel PI
kontrolcüye göre yörünge izleme doğruluğu ve hata büyüklüğü açısından daha iyi
sonuçlar verdiğini göstermiştir.
References
- Carelli, R., Santos-Victor, J. Roberti, F. and Tosetti, S., (2006). “Direct visual tracking control of remote cellular robots”, Robotics and Autonomous Systems, 54, 805–814.
- Das T. and Kar, I.N.,(2006). “Design and implementation of an adaptive fuzzy logic based controller for wheeled mobile robots”, IEEE Transactions on Control Systems Technology, 14, 501–510.
- Das, S.,(2008). “Functional Fractional Calculus for System Identification and Controls”, Springer, 1st Edition,
Ertugrul M, Sabanoviç A, Kaynak O., (1994). “Various VSS Techniques on The Control of Automated GuidedVehicles and Autonomous Mobile Robots”. PROJECT Report of CAD/CAM Robotics Dept. TUBITAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Hang, P., et al. (2017). "Path tracking control of a four-wheel-independent-steering electric vehicle based on model predictive control." Control Conference (CCC), 36th Chinese. IEEE, 2017.
- Huang, J., et al. (2014). "Adaptive output feedback tracking control of a nonholonomic mobile robot." Automatica 50.3: 821-831.
- Kayacan, E., Herman, R., and Wouter. S., (2016). "Robust trajectory tracking error model-based predictive control for unmanned ground vehicles." IEEE/ASME Transactions on Mechatronics 21.2: 806-814.
- Lee, D., Jin Kim, H. and Sastry. S. (2009). "Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter." International Journal of control, Automation and systems7.3: 419-428.
- Ma, M., Hong, C., and Xiangjie, L.,(2011).“Tracking and stabilization control of WMR by dynamic feedback linearization”, Control and Decision Conf. (CCDC), Chinese, 3430–3435.
- Normey-Rico, J.E., et al. (2001). "Mobile robot path tracking using a robust PID controller." Control Engineering Practice 9.11: 1209-1214.
Oldham, K.B. and Spanier, J., (1974). The Fractional Calculus, Academic Press,
- Podlubny, I., (1999a). Fractional Differential Equations, Academic Press, San Diego, California.
- Podlubny, I., (1999b.) “Fractional-order systems and PI^λ D^μ controllers”, IEEE Transactions on Automatic Control, vol. 44(1), pp. 208–214.
- Sabanovic, A., Jezernik, K., Wada, K., (1996). “Chattering-free sliding modes in robotic manipulators control”, Robotica, vol. 14, no. 1, pp. 17–29,[Online].
- Sun, S., (2005). “Designing approach on trajectory-tracking control of mobile robot”, Robotics Computer-Integrated Manufacturing, 21, 81–85.
- Yue, M., Tang, F., Liu, B., and Yao, B., (2012). “Trajectory-tracking control of a nonholonomic mobile robot: Backstepping kinematics into dynamics with uncertain disturbances”, Applied Artificial Intelligence, 26(10), 952–966.
Speed and Direction Angle Control of Four Wheel Drive Skid-Steered Mobile Robot by Fractional Order Sliding-Mode Control
Year 2017,
Volume: 1 Special Issue, 38 - 46, 25.12.2017
Kamil Orman
,
Adnan Derdiyok
Abstract
In
this study, a Fractional Order Sliding Mode Controller (FOSMC) structure was
simulated to control the direction angle and body speed of a four wheel drive
skid-steered mobile robot (4WD SSMR). The body velocity and orientation angle
of the mobile robot are calculated using the angular velocity of each motor.
The torque signal of each motor for trajectory tracking and position stability of
the mobile robot will be generated by the FOSMC. To compare the performance of
the FOSMC, a PI controller with well-tuned parameters was applied to the mobile
robot using the same references. Simulation studies have shown that the FOSMC
provides better results in terms of error levels and trajectory tracking accuracy
than the conventional PI controller.
References
- Carelli, R., Santos-Victor, J. Roberti, F. and Tosetti, S., (2006). “Direct visual tracking control of remote cellular robots”, Robotics and Autonomous Systems, 54, 805–814.
- Das T. and Kar, I.N.,(2006). “Design and implementation of an adaptive fuzzy logic based controller for wheeled mobile robots”, IEEE Transactions on Control Systems Technology, 14, 501–510.
- Das, S.,(2008). “Functional Fractional Calculus for System Identification and Controls”, Springer, 1st Edition,
Ertugrul M, Sabanoviç A, Kaynak O., (1994). “Various VSS Techniques on The Control of Automated GuidedVehicles and Autonomous Mobile Robots”. PROJECT Report of CAD/CAM Robotics Dept. TUBITAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Hang, P., et al. (2017). "Path tracking control of a four-wheel-independent-steering electric vehicle based on model predictive control." Control Conference (CCC), 36th Chinese. IEEE, 2017.
- Huang, J., et al. (2014). "Adaptive output feedback tracking control of a nonholonomic mobile robot." Automatica 50.3: 821-831.
- Kayacan, E., Herman, R., and Wouter. S., (2016). "Robust trajectory tracking error model-based predictive control for unmanned ground vehicles." IEEE/ASME Transactions on Mechatronics 21.2: 806-814.
- Lee, D., Jin Kim, H. and Sastry. S. (2009). "Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter." International Journal of control, Automation and systems7.3: 419-428.
- Ma, M., Hong, C., and Xiangjie, L.,(2011).“Tracking and stabilization control of WMR by dynamic feedback linearization”, Control and Decision Conf. (CCDC), Chinese, 3430–3435.
- Normey-Rico, J.E., et al. (2001). "Mobile robot path tracking using a robust PID controller." Control Engineering Practice 9.11: 1209-1214.
Oldham, K.B. and Spanier, J., (1974). The Fractional Calculus, Academic Press,
- Podlubny, I., (1999a). Fractional Differential Equations, Academic Press, San Diego, California.
- Podlubny, I., (1999b.) “Fractional-order systems and PI^λ D^μ controllers”, IEEE Transactions on Automatic Control, vol. 44(1), pp. 208–214.
- Sabanovic, A., Jezernik, K., Wada, K., (1996). “Chattering-free sliding modes in robotic manipulators control”, Robotica, vol. 14, no. 1, pp. 17–29,[Online].
- Sun, S., (2005). “Designing approach on trajectory-tracking control of mobile robot”, Robotics Computer-Integrated Manufacturing, 21, 81–85.
- Yue, M., Tang, F., Liu, B., and Yao, B., (2012). “Trajectory-tracking control of a nonholonomic mobile robot: Backstepping kinematics into dynamics with uncertain disturbances”, Applied Artificial Intelligence, 26(10), 952–966.