Research Article
BibTex RIS Cite

Electrochemical production of ZnO and ZnO@Ag core-shell nanorods on ITO substrate and their photocatalytic and photoelectrochemical performance

Year 2019, Volume: 3 Issue: 2, 161 - 177, 30.09.2019
https://doi.org/10.30516/bilgesci.605492

Abstract

Zinc
oxide (ZnO) and Ag deposited ZnO (ZnO@Ag) core-shell nanorods produced
electrochemically on indium tin oxide coated glass (ITO) substrate for the
first time without any organic surfactants or high annealing temperature.
Nanorod films were synthesized two-step synthesis procedure. Firstly, ZnO
nanorods electrodeposited at low temperature, in second step, in situ
electrochemically etching of deposited ZnO nanorod was carried out.
Characterizations of electrochemically produced films have been carried by
using morphologic, spectroscopic and structural analysis methods by using X-ray
diffraction (XRD), scanning electron microscope (SEM), atomic force microscope
(AFM), fourier transform infrared spectroscopy (FTIR), Elemental mapping,
UV-visible
diffuse absorption spectra and photoluminesance spectroscopy (PL)
. The photocatalytic performance of the obtained
films was determined by degradation of methylene blue and malachite green dyes
under UV light illumination. Methylene blue and malachite green dyes completely
degraded under UV light irradiation after 150 and 180 min, respectively. Also,
photoelectrochemical (PEC; water splitting) performances of the produced films
were investigated under dark conditions and UV light irradiation. The ZnO@Ag
core-shell nanorods exhibited higher photocatalytic and photoelectrochemical
performance in comparison with unmodified ZnO nanorods film. The nanorods grown
on the ITO substrates showed very good photocatalytic activity and became
reusable without significant loss of activity.

Supporting Institution

Selcuk University Council of Scientific Research Projects

Project Number

15401120

References

  • Ansari, S.A., Khan, M.M., Ansari, M.O., Lee, J., Cho. M.H. (2013). Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–Zno Nanocomposite. The Journal of Physical Chemistry C 117(51), 27023-30.
  • Ansari, S. A., Khan, M.M., Lee, J., Cho, M.H. (2004). Highly Visible Light Active Ag@Zno Nanocomposites Synthesized by Gel-Combustion Route. Journal of Industrial and Engineering Chemistry, 20 (4), 1602-1607.
  • Bechambi, O., Chalbi, M., Najjar, W., Sayadi, S. (2015). Photocatalytic Activity of Zno Doped with Ag on the Degradation of Endocrine Disrupting under Uv Irradiation and the Investigation of Its Antibacterial Activity. Applied Surface Science, 347, 414–20.
  • Braiek, Z., Brayek, A., Ghoul, M., Taieb, S. B., Gannouni, M., Ben Assaker, I., Souissi, A., Chtourou. R. (2015). Electrochemical Synthesis of Zno/In2s3 Core–Shell Nanowires for Enhanced Photoelectrochemical Properties. Journal of Alloys and Compounds, 653, 395-401.
  • Bu, I.Y. (2015). Enhanced Photocatalytic Activity of Sol–Gel Derived Zno Via the Co-Doping Process. Superlattices and Microstructures, 86, 36–42.
  • Chandrasekhar, M., Nagabhushana, H., Vidya, Y.S., Anantharaju, K.S., Sharma, S.C., Premkumar, H.B., Prashantha, S.C. et al. (2015). Synthesis of Eu3+-Activated Zno Superstructures: Photoluminescence, Judd–Ofelt Analysis and Sunlight Photocatalytic Properties. Journal of Molecular Catalysis A: Chemical, 409, 26-41.
  • Chen, L., Tran. T., Huang, T.C., Li, J., Yuan, L., Cai. Q. (2013). Synthesis and Photocatalytic Application of Au/Ag Nanoparticle-Sensitized Zno Films. Applied Surface Science, 273, 82-88
  • Chikoidze, E., Nolan, M., Modreanu, M., Sallet, V., Galtier, P. (2008). Effect of Chlorine Doping on Electrical and Optical Properties of Zno Thin Films. Thin Solid Films 516(22), 8146-49.
  • El Amiri, A., Moubah, R., Lmai, F., Abid, M., Hassanain, N., Hlil, E.K., Lassri, H. (2016). Probing Magnetism and Electronic Structure of Fe-Doped Zno Thin Films. Journal of Magnetism and Magnetic Materials 398, 86-89.
  • Fabbri, B. , Gaiardo, A., Giberti, A., Guidi, V., Malagù, C., Martucci, A,. Sturaro, M., et al. (2016). Chemoresistive Properties of Photo-Activated Thin and Thick Zno Film. Sensors and Actuators B: Chemical 222, 1251–56.
  • Ge, C., Li, H., Li, M., Li, C., Wu, X., Yang, B. (2015). Synthesis of a Zno Nanorod/Cvd Graphene Composite for Simultaneous Sensing of Dihydroxybenzene Isomers. Carbon, 95, 1-9 .
  • Gülce, H., Eskizeybek, V., Haspulat, B., Sarı, F., Gülce, A., Avcı. A. (2013). Preparation of a New Polyaniline/Cdo Nanocomposite and Investigation of Its Photocatalytic Activity: Comparative Study under Uv Light and Natural Sunlight Irradiation. Industrial & Engineering Chemistry Research, 52(32), 10924-34.
  • Habibi, M.H., Shojaee, E. (2015). Fabrication and Characterization of Cobalt Sensitized Nanostructure Zinc Oxide Thin Film Coated on Glass by Sol-Gel Spin Coating Using Trans-Bis(Acetylacetonato)-Bis(4-Methylpyridine)Cobalt(Iii). Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45 (11), 1642-46.
  • Hsu, M.H., Chang, C.J. (2014). Ag-Doped Zno Nanorods Coated Metal Wire Meshes as Hierarchical Photocatalysts with High Visible-Light Driven Photoactivity and Photostability. Journal of Hazardous Materials 278, 444-53.
  • Kaneva, N.V., Dimitrov, D.T., Dushkin, C.D. (2011). Effect of Nickel Doping on the Photocatalytic Activity of Zno Thin Films under Uv and Visible Light. Applied Surface Science 257, 8113–20.
  • Kang, S.H., Ahn, D.B., Kim, H.J., Kim, H.G., Lim, H.S., Chang, W.H., Lee, Y.S. 88 (2006). Structural, Electrical, and Optical Properties of P -Type Zno Thin Films with Ag Dopant. Applied Physics Letters, 202,108-3.
  • Khataee, A., Saadi, S., Safarpour, M., Joo, S.W. (2015). Sonocatalytic Performance of Er-Doped Zno for Degradation of a Textile Dye. Ultrasonics Sonochemistry 27, 379–88.
  • Hyunghoon, K., Moon, J.Y., Lee, H.S. (2012). Effect of Zncl2 Concentration on the Growth of Zno by Electrochemical Deposition. Current Applied Physics, 12, 35-38.
  • Kumari, B., Sharma, S., Satsangi, V.R., Dass, S., Shrivastav, R. (2015). Surface Deposition of Ag and Au Nano-Isles on Zno Thin Films Yields Enhanced Photoelectrochemical Splitting of Water. Journal of Applied Electrochemistry, 45(4), 299-312.
  • Li, H., Zhang, W., Guan, L., Li, F., Yao, M. (2015). Visible Light Active Tio2–Zno Composite Films by Cerium and Fluorine Codoping for Photocatalytic Decontamination. Materials Science in Semiconductor Processing, 40, 310–18.
  • Li, P., Wei, Z., Wu, T., Peng, Q., Li, Y. (2011). Au-Zno Hybrid Nanopyramids and Their Photocatalytic Properties. Journal of American Chemical Society, 133(15), 5660-5663.
  • Li, Y., Wang, D., Li, W., He, Y. (2015). Photoelectric Conversion Properties of Electrochemically Codeposited Graphene Oxide–Zno Nanocomposite Films. Journal of Alloys and Compounds, 648, 942-50.
  • Lu, H., Zhai, X., Liu, W., Zhang, M., Guo, M. (2015). Electrodeposition of Hierarchical Zno Nanorod Arrays on Flexible Stainless Steel Mesh for Dye-Sensitized Solar Cell. Thin Solid Films, 586, 46-53.
  • Mosquera, E., Rojas-Michea, C., Morel, M., Gracia, F., Fuenzalida, V., Zárate, R.A. (2015). Zinc Oxide Nanoparticles with Incorporated Silver: Structural, Morphological, Optical and Vibrational Properties. Applied Surface Science, 347, 561-68.
  • Nam, G., Kim, B., Leem, J. (2015), Facile Synthesis and an Effective Doping Method for Zno:In3+ Nanorods with Improved Optical Properties. Journal of Alloys and Compounds, 651, 1-7.
  • Orhan, N., Baykul, M.C. (2012). Characterization of Size-Controlled Zno Nanorods Produced by Electrochemical Deposition Technique." Solid-State Electronics, 78, 147-50.
  • Öztürk, S., Kösemen, A., Alpaslan Kösemen, Z., Kılın, N., Öztürk, Z.Z., Penza, M. (2016), Electrochemically Growth of Pd Doped Zno Nanorods on QCM for Room Temperature Voc Sensors. Sensors and Actuators B: Chemical, 222, 280–89.
  • Patil, S.S., Mali, M.G., Tamboli, M.S., Patil, D.R., Kulkarni, M.V., Yoon, H., Kim, H., et al. (2016). Green Approach for Hierarchical Nanostructured Ag-Zno and Their Photocatalytic Performance under Sunlight. Catalysis Today, 260 126-34.
  • Pradhan, D., Leung, K.T. (2008). Controlled Growth of Two-Dimensional and One-Dimensional Zno Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition. Langmuir, 24, 9707-9716.
  • Rahman, M.Y.A., Roza, L., Umar, A.A., Salleh, M.M. (2015). Effect of Boric Acid Composition on the Properties of Zno Thin Film Nanotubes and the Performance of Dye-Sensitized Solar Cell (Dssc). Journal of Alloys and Compounds, 648, 86-91.
  • Sahu, R.K., Ganguly, K., Mishra, T., Mishra, M., Ningthoujam, R.S., Roy, S.K., Pathak, L.C. (2012). Stabilization of Intrinsic Defects at High Temperatures in Zno Nanoparticles by Ag Modification. Journal of Colloid and Interface Science, 366(1), 8-15.
  • Shewale, P.S., Yu. Y.S. (2016). Structural, Surface Morphological and Uv Photodetection Properties of Pulsed Laser Deposited Mg-Doped Zno Nanorods: Effect of Growth Time. Journal of Alloys and Compounds, 654, 79-86.
  • Skompska, M., Zarebska, K. (2014). Electrodeposition of Zno Nanorod Arrays on Transparent Conducting Substrates–a Review. Electrochimica Acta, 127, 467-488.Tang, K., Gu, S., Liu, J., Ye, J., Zhu, S., Zheng, Y. (2015). Effects of Indium Doping on the Crystallographic, Morphological, Electrical, and Optical Properties of Highly Crystalline Zno Film. Journal of Alloys and Compounds, 653, 643-648.
  • Udom, I. , Ram, M.K., Stefanakos, E.K., Hepp, A.F., Goswami, D.Y. (2013). One Dimensional-Zno Nanostructures: Synthesis, Properties and Environmental Applications. Materials Science in Semiconductor Processing, 16, 2070-2083.
  • Vanalakar, S.A., Patil, V.L., Harale, N.S., Vhanalakar, S.A., Gang, M.G., Kim, J.Y., Patil, P.S., Kim, J.H. (2015). Controlled Growth of Zno Nanorod Arrays Via Wet Chemical Route for No2 Gas Sensor Applications. Sensors and Actuators B: Chemical, 221, 1195–1201.
  • Wang, R., Su. W. (2016). Valence Control and Periodic Structures in Cu-Doped Zno Nanowires. Journal of Alloys and Compounds, 654, 1-7.
  • Xu, F., Chen, J., Guo, L., Lei, S., Ni. Y. (2012). In Situ Electrochemically Etching-Derived Zno Nanotube Arrays for Highly Efficient and Facilely Recyclable Photocatalyst. Applied Surface Science 258, 8160–8165.
  • Yoo, R., Cho, S., Song, M., Leea, W. (2015). Highly Sensitive Gas Sensor Based on Al-Doped Zno Nanoparticles for Detection of Dimethyl Methylphosphonate as a Chemical Warfare Agent Simulant. Sensors and Actuators B: Chemical, 221, 217–223.
  • Zhang, Y., Ram, M.K., Stefanakos, E.K., Goswami, D.Y. (2012). Synthesis, Characterization, and Applications of Znonanowires. Journal of Nanomaterials 2012, 1-22.
  • Zulkifli, Z., Kalita, G., Tanemura, M. (2015). Fabrication of Transparent and Flexible Carbon-Doped Zno Field Emission Display on Plastic Substrate. Physica Status Solidi 9,145-148.
Year 2019, Volume: 3 Issue: 2, 161 - 177, 30.09.2019
https://doi.org/10.30516/bilgesci.605492

Abstract

Project Number

15401120

References

  • Ansari, S.A., Khan, M.M., Ansari, M.O., Lee, J., Cho. M.H. (2013). Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–Zno Nanocomposite. The Journal of Physical Chemistry C 117(51), 27023-30.
  • Ansari, S. A., Khan, M.M., Lee, J., Cho, M.H. (2004). Highly Visible Light Active Ag@Zno Nanocomposites Synthesized by Gel-Combustion Route. Journal of Industrial and Engineering Chemistry, 20 (4), 1602-1607.
  • Bechambi, O., Chalbi, M., Najjar, W., Sayadi, S. (2015). Photocatalytic Activity of Zno Doped with Ag on the Degradation of Endocrine Disrupting under Uv Irradiation and the Investigation of Its Antibacterial Activity. Applied Surface Science, 347, 414–20.
  • Braiek, Z., Brayek, A., Ghoul, M., Taieb, S. B., Gannouni, M., Ben Assaker, I., Souissi, A., Chtourou. R. (2015). Electrochemical Synthesis of Zno/In2s3 Core–Shell Nanowires for Enhanced Photoelectrochemical Properties. Journal of Alloys and Compounds, 653, 395-401.
  • Bu, I.Y. (2015). Enhanced Photocatalytic Activity of Sol–Gel Derived Zno Via the Co-Doping Process. Superlattices and Microstructures, 86, 36–42.
  • Chandrasekhar, M., Nagabhushana, H., Vidya, Y.S., Anantharaju, K.S., Sharma, S.C., Premkumar, H.B., Prashantha, S.C. et al. (2015). Synthesis of Eu3+-Activated Zno Superstructures: Photoluminescence, Judd–Ofelt Analysis and Sunlight Photocatalytic Properties. Journal of Molecular Catalysis A: Chemical, 409, 26-41.
  • Chen, L., Tran. T., Huang, T.C., Li, J., Yuan, L., Cai. Q. (2013). Synthesis and Photocatalytic Application of Au/Ag Nanoparticle-Sensitized Zno Films. Applied Surface Science, 273, 82-88
  • Chikoidze, E., Nolan, M., Modreanu, M., Sallet, V., Galtier, P. (2008). Effect of Chlorine Doping on Electrical and Optical Properties of Zno Thin Films. Thin Solid Films 516(22), 8146-49.
  • El Amiri, A., Moubah, R., Lmai, F., Abid, M., Hassanain, N., Hlil, E.K., Lassri, H. (2016). Probing Magnetism and Electronic Structure of Fe-Doped Zno Thin Films. Journal of Magnetism and Magnetic Materials 398, 86-89.
  • Fabbri, B. , Gaiardo, A., Giberti, A., Guidi, V., Malagù, C., Martucci, A,. Sturaro, M., et al. (2016). Chemoresistive Properties of Photo-Activated Thin and Thick Zno Film. Sensors and Actuators B: Chemical 222, 1251–56.
  • Ge, C., Li, H., Li, M., Li, C., Wu, X., Yang, B. (2015). Synthesis of a Zno Nanorod/Cvd Graphene Composite for Simultaneous Sensing of Dihydroxybenzene Isomers. Carbon, 95, 1-9 .
  • Gülce, H., Eskizeybek, V., Haspulat, B., Sarı, F., Gülce, A., Avcı. A. (2013). Preparation of a New Polyaniline/Cdo Nanocomposite and Investigation of Its Photocatalytic Activity: Comparative Study under Uv Light and Natural Sunlight Irradiation. Industrial & Engineering Chemistry Research, 52(32), 10924-34.
  • Habibi, M.H., Shojaee, E. (2015). Fabrication and Characterization of Cobalt Sensitized Nanostructure Zinc Oxide Thin Film Coated on Glass by Sol-Gel Spin Coating Using Trans-Bis(Acetylacetonato)-Bis(4-Methylpyridine)Cobalt(Iii). Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45 (11), 1642-46.
  • Hsu, M.H., Chang, C.J. (2014). Ag-Doped Zno Nanorods Coated Metal Wire Meshes as Hierarchical Photocatalysts with High Visible-Light Driven Photoactivity and Photostability. Journal of Hazardous Materials 278, 444-53.
  • Kaneva, N.V., Dimitrov, D.T., Dushkin, C.D. (2011). Effect of Nickel Doping on the Photocatalytic Activity of Zno Thin Films under Uv and Visible Light. Applied Surface Science 257, 8113–20.
  • Kang, S.H., Ahn, D.B., Kim, H.J., Kim, H.G., Lim, H.S., Chang, W.H., Lee, Y.S. 88 (2006). Structural, Electrical, and Optical Properties of P -Type Zno Thin Films with Ag Dopant. Applied Physics Letters, 202,108-3.
  • Khataee, A., Saadi, S., Safarpour, M., Joo, S.W. (2015). Sonocatalytic Performance of Er-Doped Zno for Degradation of a Textile Dye. Ultrasonics Sonochemistry 27, 379–88.
  • Hyunghoon, K., Moon, J.Y., Lee, H.S. (2012). Effect of Zncl2 Concentration on the Growth of Zno by Electrochemical Deposition. Current Applied Physics, 12, 35-38.
  • Kumari, B., Sharma, S., Satsangi, V.R., Dass, S., Shrivastav, R. (2015). Surface Deposition of Ag and Au Nano-Isles on Zno Thin Films Yields Enhanced Photoelectrochemical Splitting of Water. Journal of Applied Electrochemistry, 45(4), 299-312.
  • Li, H., Zhang, W., Guan, L., Li, F., Yao, M. (2015). Visible Light Active Tio2–Zno Composite Films by Cerium and Fluorine Codoping for Photocatalytic Decontamination. Materials Science in Semiconductor Processing, 40, 310–18.
  • Li, P., Wei, Z., Wu, T., Peng, Q., Li, Y. (2011). Au-Zno Hybrid Nanopyramids and Their Photocatalytic Properties. Journal of American Chemical Society, 133(15), 5660-5663.
  • Li, Y., Wang, D., Li, W., He, Y. (2015). Photoelectric Conversion Properties of Electrochemically Codeposited Graphene Oxide–Zno Nanocomposite Films. Journal of Alloys and Compounds, 648, 942-50.
  • Lu, H., Zhai, X., Liu, W., Zhang, M., Guo, M. (2015). Electrodeposition of Hierarchical Zno Nanorod Arrays on Flexible Stainless Steel Mesh for Dye-Sensitized Solar Cell. Thin Solid Films, 586, 46-53.
  • Mosquera, E., Rojas-Michea, C., Morel, M., Gracia, F., Fuenzalida, V., Zárate, R.A. (2015). Zinc Oxide Nanoparticles with Incorporated Silver: Structural, Morphological, Optical and Vibrational Properties. Applied Surface Science, 347, 561-68.
  • Nam, G., Kim, B., Leem, J. (2015), Facile Synthesis and an Effective Doping Method for Zno:In3+ Nanorods with Improved Optical Properties. Journal of Alloys and Compounds, 651, 1-7.
  • Orhan, N., Baykul, M.C. (2012). Characterization of Size-Controlled Zno Nanorods Produced by Electrochemical Deposition Technique." Solid-State Electronics, 78, 147-50.
  • Öztürk, S., Kösemen, A., Alpaslan Kösemen, Z., Kılın, N., Öztürk, Z.Z., Penza, M. (2016), Electrochemically Growth of Pd Doped Zno Nanorods on QCM for Room Temperature Voc Sensors. Sensors and Actuators B: Chemical, 222, 280–89.
  • Patil, S.S., Mali, M.G., Tamboli, M.S., Patil, D.R., Kulkarni, M.V., Yoon, H., Kim, H., et al. (2016). Green Approach for Hierarchical Nanostructured Ag-Zno and Their Photocatalytic Performance under Sunlight. Catalysis Today, 260 126-34.
  • Pradhan, D., Leung, K.T. (2008). Controlled Growth of Two-Dimensional and One-Dimensional Zno Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition. Langmuir, 24, 9707-9716.
  • Rahman, M.Y.A., Roza, L., Umar, A.A., Salleh, M.M. (2015). Effect of Boric Acid Composition on the Properties of Zno Thin Film Nanotubes and the Performance of Dye-Sensitized Solar Cell (Dssc). Journal of Alloys and Compounds, 648, 86-91.
  • Sahu, R.K., Ganguly, K., Mishra, T., Mishra, M., Ningthoujam, R.S., Roy, S.K., Pathak, L.C. (2012). Stabilization of Intrinsic Defects at High Temperatures in Zno Nanoparticles by Ag Modification. Journal of Colloid and Interface Science, 366(1), 8-15.
  • Shewale, P.S., Yu. Y.S. (2016). Structural, Surface Morphological and Uv Photodetection Properties of Pulsed Laser Deposited Mg-Doped Zno Nanorods: Effect of Growth Time. Journal of Alloys and Compounds, 654, 79-86.
  • Skompska, M., Zarebska, K. (2014). Electrodeposition of Zno Nanorod Arrays on Transparent Conducting Substrates–a Review. Electrochimica Acta, 127, 467-488.Tang, K., Gu, S., Liu, J., Ye, J., Zhu, S., Zheng, Y. (2015). Effects of Indium Doping on the Crystallographic, Morphological, Electrical, and Optical Properties of Highly Crystalline Zno Film. Journal of Alloys and Compounds, 653, 643-648.
  • Udom, I. , Ram, M.K., Stefanakos, E.K., Hepp, A.F., Goswami, D.Y. (2013). One Dimensional-Zno Nanostructures: Synthesis, Properties and Environmental Applications. Materials Science in Semiconductor Processing, 16, 2070-2083.
  • Vanalakar, S.A., Patil, V.L., Harale, N.S., Vhanalakar, S.A., Gang, M.G., Kim, J.Y., Patil, P.S., Kim, J.H. (2015). Controlled Growth of Zno Nanorod Arrays Via Wet Chemical Route for No2 Gas Sensor Applications. Sensors and Actuators B: Chemical, 221, 1195–1201.
  • Wang, R., Su. W. (2016). Valence Control and Periodic Structures in Cu-Doped Zno Nanowires. Journal of Alloys and Compounds, 654, 1-7.
  • Xu, F., Chen, J., Guo, L., Lei, S., Ni. Y. (2012). In Situ Electrochemically Etching-Derived Zno Nanotube Arrays for Highly Efficient and Facilely Recyclable Photocatalyst. Applied Surface Science 258, 8160–8165.
  • Yoo, R., Cho, S., Song, M., Leea, W. (2015). Highly Sensitive Gas Sensor Based on Al-Doped Zno Nanoparticles for Detection of Dimethyl Methylphosphonate as a Chemical Warfare Agent Simulant. Sensors and Actuators B: Chemical, 221, 217–223.
  • Zhang, Y., Ram, M.K., Stefanakos, E.K., Goswami, D.Y. (2012). Synthesis, Characterization, and Applications of Znonanowires. Journal of Nanomaterials 2012, 1-22.
  • Zulkifli, Z., Kalita, G., Tanemura, M. (2015). Fabrication of Transparent and Flexible Carbon-Doped Zno Field Emission Display on Plastic Substrate. Physica Status Solidi 9,145-148.
There are 40 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Bircan Haspulat-taymaz

Handan Kamış

Nadiye Duyar-karakuş This is me

Project Number 15401120
Publication Date September 30, 2019
Acceptance Date September 29, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Haspulat-taymaz, B., Kamış, H., & Duyar-karakuş, N. (2019). Electrochemical production of ZnO and ZnO@Ag core-shell nanorods on ITO substrate and their photocatalytic and photoelectrochemical performance. Bilge International Journal of Science and Technology Research, 3(2), 161-177. https://doi.org/10.30516/bilgesci.605492