Research Article
BibTex RIS Cite

Effects of Salicylic Acid on Triticale under Salt Stress

Year 2021, Volume: 5 Issue: 1, 80 - 85, 31.03.2021
https://doi.org/10.30516/bilgesci.839844

Abstract

The goal of this study was to determine the effect of salicylic acid (50 µM) on triticale grown under salt stress. In this study, we investigated shoot and root lengths, malondialdehyde, proline, ion leakage, relative water content, chlorophyll content. The results indicated that salicylic acid is quite effective to deal with salt stress. Anatomically shoot and root lengths as well as relative water content and chlorophyll content were increased by salicylic acid under salt toxicity. Moreover malondialdehyde, proline and ion leakage were decreased by the application of salicylic acid. Overall our results indicated that salicylic acid can be used for agricultural production of triticale under salt stress.

Supporting Institution

Isparta University of Applied Sciences

References

  • Abdelkhalek, A., Al-Askar, A.A. (2020). Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Applied Sciences, 10, 1-15.
  • Azooz, M.M. (2009). Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. International Journal of Agriculture and Biology, 11, 343-350.
  • Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Chookhampaeng, S. (2011). The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. European Journal of Scientific Research, 49, 103-109.
  • Demirbas, S., Balkan, A. (2020). The effect of H2O2 pre-treatment on antioxidant enzyme activities of Triticale under salt stress. Comptes Rendus de l’Académie Bulgare des Sciences, 73, 1169-1178.
  • El-Kinany, R.G. (2020). The beneficial role of salicylic acid, triacontanol and δ-aminolevulinic acid on the growth, flowering and chemical composition of pansy (Viola wittrockiana gams) under salt stress conditions. Hortscience Journal of Suez Canal University, 9, 13-30.
  • El-Tayeb, M.A. (2005). Response of barley grains to the interactive e. ect of salinity and salicylic acid. Journal of Plant Growth Regulation, 45, 215-224.
  • Eugenia, M., Nunes, S., Smith, G.R. (2003). Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. Crop Science, 43, 1349-1357.
  • Foyer, C.H., Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155, 93-100.
  • Gołębiowska-Pikania, G., Dziurka, M., Wąsek, I., Wajdzik, K., Dyda, M., Wędzony, M. (2019). Changes in phenolic acid abundance involved in low temperature and Microdochium nivale (Samuels and Hallett) cross-tolerance in winter triticale (x Triticosecale Wittmack). Acta Physiologiae Plantarum, 41, 1-14.
  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736.
  • Hoagland, D.R., Arnon, D.I. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station, 347, 1-32.
  • Horva´th, E., Szalai, G., Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290-300.
  • Huang, W., Wang, Y., Li, X., Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13, 31-41.
  • Kanber, R., Çullu, M.A., Kendirli, B., Antepli, S., Yılmaz, N. (2005). Sulama, drenaj ve tuzluluk. Türkiye Ziraat Mühendisliği VI. Teknik Kongresi. 3-7.
  • Karım, M.A., Nawata, E., Shıgenaga, S. (1993). Effects of salinity and water stress on the growth, yield and physiological characteristics in hexaploid triticale. Japanese Journal of Tropical Agriculture, 37, 46-52.
  • Karlidag, H., Yildirim, E., Turan, M. (2009). Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66, 180-187.
  • Khan, W., Balakrishnan, P., Smith, D.L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485-492.
  • Khan, N.A., Syeed, S., Masood, A., Nazar, R., Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. The International Journal of Plant Biology, 1, 1-8.
  • Koebner, R.M.D., Martin, P.K. (1996). High Levels of Salt Tolerance Revealed in Triticale. In: Guedes-Pinto, H., Darvey, N., Carnide, V.P. (editors). Triticale: Today and Tomorrow. Dordrecht, Developments in Plant Breeding, Springer. pp. 429-436.
  • Lee, H.Y., Yoon, G.M. (2020). Strigolactone elevates ethylene biosynthesis in etiolated Arabidopsis seedlings. Plant Signaling Behavior, 15, 1-5.
  • Lelley, T. (2006). Triticale: A low-Input Cereal with Untapped Potential. In: Singh, R.J., Jauhar, P.P. (editors). Genetic Resources, Chromosome Engineering, and Crop Improvement: Cereals. London, UK: Taylor & Francis Group. pp. 395-430.
  • Lonbani, M.A., Arzani, A. (2011). Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agronomy Research, 9, 315-329.
  • Mohamed, H.I., Akladious, S.A., Ashry, N.A. (2018). Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-based markers. Gesunde Pflanzen, 70, 205-215.
  • Müntzing, A. (1979). Triticale-Results and Problems. Fortschritte der Pflanzenzuechtung. Verlag Paul Parey. Berlin and Hamburg, Germany.
  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461, 205-210.
  • Nazar, R., Iqbal, N., Syeed, S., Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. The Journal of Plant Physiology, 168, 807-815.
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Palta, J.P., Jensen, K.G., Li, P.H. (1982). Cell Membrane Alterations Following A Slow Freeze-Thaw Cycle: Ion Leakage, Injury and Recovery. In: Li PH, Sakai A (editors). In Plant cold hardiness and freezing stress. New York: Academic Press. pp. 221-242.
  • Premachandra, G.S., Saneoka, H., Fujıta, K., Ogata, S. (1992). Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. Journal of Experimental Botany, 43, 1569-1576.
  • Rivas-San Vicente, M., Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321-3338.
  • Sarinana-Aldaco, O., Sanchez-Chavez, E., Fortis-Hernandez, M., GonzáLez-Fuentes, J.A., Moreno-Resendez, A., Rojas-Duarte, A., Preciado-Rangel, P. (2020). Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 882-892.
  • Shahba, Z., Baghizadeh, A., Vakili, S.M.A., Yazdanpanah, A., Yosefi, M. (2010). The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of Biophysics and Structural Biology, 2, 35-41.
  • Shanazari, M., Golkar, P., Mirmohammady Maibody, A.M. (2018). Effects of drought stress on some agronomic and bio-physiological traits of Trititicum aestivum, Triticale, and Tritipyrum genotypes. Archives of Agronomy and Soil Science, 64, 2005-2018.
  • Smart, R.E., Bingham, G.E. 1974. Rapid estimates of relative water content. Plant Physiology, 53, 258-260.
  • Syeed, S., Anjum, N.A., Nazar, R., Iqbal, N., Masood, A., Khan, N.A. (2011). Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 33, 877-886.
  • Talebi, S., Nabavi, K.S.M., Sohani, D.A.L. (2014). The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale Wittmack). International Journal of Farming and Allied Sciences, 3, 1080-1087.
  • Torğut, G., Akbulut, G.B. (2020). Kopolimerlerin tuz stresi altındaki mısır bitkilerine etkisinin biyokimyasal olarak incelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10, 448-455.
  • Varughese, G., Pfeiffer, W.H., Pena, R.J. (1996). Triticale: A successful alternative crop: Part 1. Cereal Foods World, 41, 474-482.
  • Yadav, T., Kumar, A., Yadav, R.K., Yadav, G., Kumar, R., Kushwaha, M. (2020). Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi Journal of Biological Sciences, 27, 2010-2017.
  • Yanyan, L., Chuanpeng, N., Zhaorong, D. (2005). Physiological influence of two salicylic acids on triticale seed under salt stress. Seed, 1, 2.
  • Ye, Z., Rodriguez, R., Tran, A., Hoang, H., de los Santos, D., Brown, S., Vellanoweth, R.L. (2000). The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science, 158, 115-127.
  • Yildirim, E., Turan M., Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31, 593-612.
Year 2021, Volume: 5 Issue: 1, 80 - 85, 31.03.2021
https://doi.org/10.30516/bilgesci.839844

Abstract

References

  • Abdelkhalek, A., Al-Askar, A.A. (2020). Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Applied Sciences, 10, 1-15.
  • Azooz, M.M. (2009). Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. International Journal of Agriculture and Biology, 11, 343-350.
  • Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Chookhampaeng, S. (2011). The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. European Journal of Scientific Research, 49, 103-109.
  • Demirbas, S., Balkan, A. (2020). The effect of H2O2 pre-treatment on antioxidant enzyme activities of Triticale under salt stress. Comptes Rendus de l’Académie Bulgare des Sciences, 73, 1169-1178.
  • El-Kinany, R.G. (2020). The beneficial role of salicylic acid, triacontanol and δ-aminolevulinic acid on the growth, flowering and chemical composition of pansy (Viola wittrockiana gams) under salt stress conditions. Hortscience Journal of Suez Canal University, 9, 13-30.
  • El-Tayeb, M.A. (2005). Response of barley grains to the interactive e. ect of salinity and salicylic acid. Journal of Plant Growth Regulation, 45, 215-224.
  • Eugenia, M., Nunes, S., Smith, G.R. (2003). Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. Crop Science, 43, 1349-1357.
  • Foyer, C.H., Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155, 93-100.
  • Gołębiowska-Pikania, G., Dziurka, M., Wąsek, I., Wajdzik, K., Dyda, M., Wędzony, M. (2019). Changes in phenolic acid abundance involved in low temperature and Microdochium nivale (Samuels and Hallett) cross-tolerance in winter triticale (x Triticosecale Wittmack). Acta Physiologiae Plantarum, 41, 1-14.
  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736.
  • Hoagland, D.R., Arnon, D.I. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station, 347, 1-32.
  • Horva´th, E., Szalai, G., Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290-300.
  • Huang, W., Wang, Y., Li, X., Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13, 31-41.
  • Kanber, R., Çullu, M.A., Kendirli, B., Antepli, S., Yılmaz, N. (2005). Sulama, drenaj ve tuzluluk. Türkiye Ziraat Mühendisliği VI. Teknik Kongresi. 3-7.
  • Karım, M.A., Nawata, E., Shıgenaga, S. (1993). Effects of salinity and water stress on the growth, yield and physiological characteristics in hexaploid triticale. Japanese Journal of Tropical Agriculture, 37, 46-52.
  • Karlidag, H., Yildirim, E., Turan, M. (2009). Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66, 180-187.
  • Khan, W., Balakrishnan, P., Smith, D.L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485-492.
  • Khan, N.A., Syeed, S., Masood, A., Nazar, R., Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. The International Journal of Plant Biology, 1, 1-8.
  • Koebner, R.M.D., Martin, P.K. (1996). High Levels of Salt Tolerance Revealed in Triticale. In: Guedes-Pinto, H., Darvey, N., Carnide, V.P. (editors). Triticale: Today and Tomorrow. Dordrecht, Developments in Plant Breeding, Springer. pp. 429-436.
  • Lee, H.Y., Yoon, G.M. (2020). Strigolactone elevates ethylene biosynthesis in etiolated Arabidopsis seedlings. Plant Signaling Behavior, 15, 1-5.
  • Lelley, T. (2006). Triticale: A low-Input Cereal with Untapped Potential. In: Singh, R.J., Jauhar, P.P. (editors). Genetic Resources, Chromosome Engineering, and Crop Improvement: Cereals. London, UK: Taylor & Francis Group. pp. 395-430.
  • Lonbani, M.A., Arzani, A. (2011). Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agronomy Research, 9, 315-329.
  • Mohamed, H.I., Akladious, S.A., Ashry, N.A. (2018). Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-based markers. Gesunde Pflanzen, 70, 205-215.
  • Müntzing, A. (1979). Triticale-Results and Problems. Fortschritte der Pflanzenzuechtung. Verlag Paul Parey. Berlin and Hamburg, Germany.
  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461, 205-210.
  • Nazar, R., Iqbal, N., Syeed, S., Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. The Journal of Plant Physiology, 168, 807-815.
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Palta, J.P., Jensen, K.G., Li, P.H. (1982). Cell Membrane Alterations Following A Slow Freeze-Thaw Cycle: Ion Leakage, Injury and Recovery. In: Li PH, Sakai A (editors). In Plant cold hardiness and freezing stress. New York: Academic Press. pp. 221-242.
  • Premachandra, G.S., Saneoka, H., Fujıta, K., Ogata, S. (1992). Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. Journal of Experimental Botany, 43, 1569-1576.
  • Rivas-San Vicente, M., Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321-3338.
  • Sarinana-Aldaco, O., Sanchez-Chavez, E., Fortis-Hernandez, M., GonzáLez-Fuentes, J.A., Moreno-Resendez, A., Rojas-Duarte, A., Preciado-Rangel, P. (2020). Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 882-892.
  • Shahba, Z., Baghizadeh, A., Vakili, S.M.A., Yazdanpanah, A., Yosefi, M. (2010). The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of Biophysics and Structural Biology, 2, 35-41.
  • Shanazari, M., Golkar, P., Mirmohammady Maibody, A.M. (2018). Effects of drought stress on some agronomic and bio-physiological traits of Trititicum aestivum, Triticale, and Tritipyrum genotypes. Archives of Agronomy and Soil Science, 64, 2005-2018.
  • Smart, R.E., Bingham, G.E. 1974. Rapid estimates of relative water content. Plant Physiology, 53, 258-260.
  • Syeed, S., Anjum, N.A., Nazar, R., Iqbal, N., Masood, A., Khan, N.A. (2011). Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 33, 877-886.
  • Talebi, S., Nabavi, K.S.M., Sohani, D.A.L. (2014). The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale Wittmack). International Journal of Farming and Allied Sciences, 3, 1080-1087.
  • Torğut, G., Akbulut, G.B. (2020). Kopolimerlerin tuz stresi altındaki mısır bitkilerine etkisinin biyokimyasal olarak incelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10, 448-455.
  • Varughese, G., Pfeiffer, W.H., Pena, R.J. (1996). Triticale: A successful alternative crop: Part 1. Cereal Foods World, 41, 474-482.
  • Yadav, T., Kumar, A., Yadav, R.K., Yadav, G., Kumar, R., Kushwaha, M. (2020). Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi Journal of Biological Sciences, 27, 2010-2017.
  • Yanyan, L., Chuanpeng, N., Zhaorong, D. (2005). Physiological influence of two salicylic acids on triticale seed under salt stress. Seed, 1, 2.
  • Ye, Z., Rodriguez, R., Tran, A., Hoang, H., de los Santos, D., Brown, S., Vellanoweth, R.L. (2000). The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science, 158, 115-127.
  • Yildirim, E., Turan M., Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31, 593-612.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

İbrahim Ertan Erkan 0000-0002-2815-412X

Özlem Aras Aşcı 0000-0002-8940-7514

Publication Date March 31, 2021
Acceptance Date March 17, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Erkan, İ. E., & Aras Aşcı, Ö. (2021). Effects of Salicylic Acid on Triticale under Salt Stress. Bilge International Journal of Science and Technology Research, 5(1), 80-85. https://doi.org/10.30516/bilgesci.839844