Research Article
BibTex RIS Cite

Soft Union-lambda Product of Groups

Year 2025, Volume: 9 Issue: 2, 64 - 82, 30.09.2025
https://doi.org/10.30516/bilgesci.1727597

Abstract

Soft set theory provides a logically sound and algebraically rich framework for modeling systems characterized by ambiguity, epistemic uncertainty, and parameter-dependent variability. This study introduces the soft union–lambda product, a novel binary operation defined over soft sets whose parameter spaces are endowed with an intrinsic group-theoretic structure. Developed within a rigorously formulated axiomatic framework, the opera-tion is shown to be fully compatible with generalized notions of soft subsethood and soft equality. A thorough algebraic investigation is undertaken to establish the fundamental structural properties of the opera-tion—including closure, associativity, commutativity, idempotency, and its distributivity over other soft set operations—alongside a precise characterization of its behavior with respect to identity, absorbing, null, and absolute soft sets. The results demonstrate that the soft union–lambda product adheres to all algebraic con-straints dictated by group-parameterized domains, thereby inducing a consistent and internally cohesive alge-braic structure on the universe of soft sets. Beyond its foundational contributions, the proposed operation sig-nificantly expands the formal toolkit of soft set theory and sets the stage for the development of a generalized soft group theory. Furthermore, its formal alignment with key relational structures such as soft equality and soft inclusion highlights its potential applicability across a diverse array of analytical contexts, including abstract algebraic modeling, uncertainty-aware classification, and multi-criteria decision analysis. Accordingly, the findings of this study offer both profound theoretical advancements and concrete pathways for practical im-plementation.

References

  • Abbas, M., Ali, B., & Romaguera, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191-1203.
  • Abbas, M., Ali, M. I., & Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955-5964.
  • Akram, M., Amjad, U., Alcantud, J. C. R., & Santos-García, G. (2023). Complex fermatean fuzzy N-soft sets: a new hybrid model with applications. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8765-8798.
  • Aktaş, H., & Çağman, N. (2007). Soft sets and soft groups. Information sciences, 177(13), 2726-2735.
  • Alcantud, J. C. R. (2022a). The semantics of N-soft sets, their applications, and a coda about three-way decision. Information Sciences, 606, 837-852. Alcantud, J. C. R. (2022b). Convex soft geometries. Journal of Computational and Cognitive Engineering, 1(1), 2-12.
  • Alcantud, J. C. R., Khameneh, A. Z., Santos-García, G., & Akram, M. (2024). A systematic literature review of soft set theory. Neural Computing and Applications, 36(16), 8951-8975.
  • Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547-1553.
  • Ali, M. I., Mahmood, T., Rehman, M. M. U., & Aslam, M. F. (2015). On lattice ordered soft sets. Applied soft computing, 36, 499-505.
  • Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M., & George, R. (2022). A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 2636.
  • Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers & mathematics with applications, 61(9), 2647-2654.
  • Al-Shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and gf-soft equality relations. Filomat, 33(11), 3375-3383.
  • Al-Shami, T., & El-Shafei, M. (2020). T-soft equality relation. Turkish journal of mathemat-ics, 44(4), 1427-1441.
  • Ameen, Z. A., & Al Ghour, S. (2023). Cluster soft sets and cluster soft topolo-gies. Computational and Applied Mathematics, 42(8), 337.
  • Atagun, A., Kamaci, H., Tastekin, I., & Sezgin S.A. (2019). P-properties in near-rings. Journal of mathematical and fundamental sciences, 51(2).
  • Atagün, A. O., & Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical sciences letters, 4(3), 235.
  • Atagün, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. Math Sci Letters, 7(1), 37-42.
  • Atagün, A. O., & Sezgin, A. (2017). Int-soft substructures of groups and semirings with ap-plications. Applied mathematics & information sciences, 11(1), 105-113.
  • Atagün, A. O., & Sezgin, A. (2018). A new view to near-ring theory: soft near-rings. South east asian journal of mathematics & mathematical sciences, 14(3).
  • Atagün, A. O., & Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, 18(01), 195-207.
  • Ay, Z. & Sezgin, A. (2025). Soft intersection-gamma product of groups, International Journal of Innovative Research and Reviews, in press.
  • Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni–int decision making. European journal of operational research, 207(2), 848-855.
  • Eren, Ö. F., & Çalışıcı, H. (2019). On some operations of soft sets. The Fourth International Conference on Computational Mathematics and Engineering Sciences.
  • Feng, F., & Li, Y. (2013). Soft subsets and soft product operations. Information sciences, 232, 44-57.
  • Feng, F., Li, C., Davvaz, B., & Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft computing, 14(9), 899-911.
  • Feng, F., Jun, Y. B., & Zhao, X. (2008). Soft semirings. Computers & Mathematics with Ap-plications, 56(10), 2621-2628.
  • Fu, L. (2011). Notes on soft set operations, ARPN Journal of Systems and Software, 1, 205-208.
  • Ge, X., & Yang, S. (2011). Investigations on some operations of soft sets. World academy of science engineering and technology, 75, 1113-1116.
  • Gulistan, M., & Shahzad, M. (2014). On soft KU-algebras. Journal of Algebra, Number The-ory: Advances and Applications, 11(1), 1-20.
  • Gulistan, M., Feng, F., Khan, M., & Sezgin, A. (2018). Characterizations of right weakly reg-ular semigroups in terms of generalized cubic soft sets. Mathematics, 6(12), 293.
  • Jana, C., Pal, M., Karaaslan, F., & Sezgi̇n, A. (2019). (α, β)-Soft Intersectional Rings and Ide-als with their Applications. New mathematics and natural computation, 15(02), 333-350.
  • Jiang, Y., Tang, Y., Chen, Q., Wang, J., & Tang, S. (2010). Extending soft sets with descrip-tion logics. Computers & mathematics with applications, 59(6), 2087-2096.
  • Jun, Y. B., & Yang, X. (2011). A note on the paper “Combination of interval-valued fuzzy set and soft set”[Comput. Math. Appl. 58 (2009) 521–527]. Computers & mathematics with ap-plications, 61(5), 1468-1470.
  • Karaaslan, F. (2019). Some properties of AG*-groupoids and AG-bands under SI-product operation. Journal of Intelligent & Fuzzy Systems, 36(1), 231-239.
  • Kaygisiz, K. (2012). On soft int-groups. Annals of fuzzy mathematics and informatics, 4(2), 363-375.
  • Khan, M. J., Alcantud, J. C. R., Akram, M., & Ding, W. (2025). Separable N-soft sets: A tool for multinary descriptions with large-scale parameter sets. Applied Intelligence, 55(6), 561.
  • Khan, M., Ilyas, F., Gulistan, M., & Anis, S. (2015). A study of fuzzy soft AG-groupoids. Annals of Fuzzy Mathematics and Informatics, 9(4), 621-638.
  • Khan, A., Izhar, M., & Sezign, A. (2017). Characterizations of Abel Grassmann's Groupoids by the properties of their double-framed soft ideals. International journal of analysis and ap-plications, 15(1), 62-74.
  • Liu, X., Feng, F., & Jun, Y. B. (2012). A note on generalized soft equal relations. Computers & mathematics with applications, 64(4), 572-578.
  • Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4-5), 555-562.
  • Mahmood, T., Waqas, A., & Rana, M. A. (2015). Soft intersectional ideals in ternary semir-ings. Science international, 27(5), 3929-3934.
  • Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of mathematics, 26(3), 503-517.
  • Manikantan, T., Ramasany, P., & Sezgin, A. (2023). Soft quasi-ideals of soft near-rings. Sigma journal of engineering and natural science, 41(3), 565-574.
  • Memiş, S. (2022). Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of new theory, (38), 1-13.
  • Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applica-tions, 37(4-5), 19-31.
  • Mustuoglu, E., Sezgin, A., & Türk, Z. K. (2016). Some characterizations on soft uni-groups and normal soft uni-groups. International journal of computer applications, 155(10), 1-8.
  • Neog, T. J., & Sut, D. K. (2011). A new approach to the theory of soft sets. International journal of computer applications, 32(2), 1-6.
  • Onyeozili, I. A., & Gwary, T. M. (2014). A study of the fundamentals of soft set theo-ry. International journal of scientific and technology research, 3(4), 132-143.
  • Özlü, Ş., & Sezgin, A. (2020). Soft covered ideals in semigroups. Acta Universitatis Sapientiae Mathematica, 12(2), 317-346.
  • Pei, D., & Miao, D. (2005, July). From soft sets to information systems. In 2005 IEEE inter-national conference on granular computing (Vol. 2, pp. 617-621). IEEE.
  • Riaz, M., Hashmi, M., Karaaslan, F., Sezgin, A., Mohammed, M., & Khalaf, M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. Computer modeling in engineering & sciences, 136(2), 1759.
  • Qin, K., & Hong, Z. (2010). On soft equality. Journal of computational and applied mathe-matics, 234(5), 1347-1355.
  • Santos‐García, G., & Alcantud, J. C. R. (2023). Ranked soft sets. Expert Systems, 40(6), e13231.
  • Sen, J. (2014). On algebraic structure of soft sets. Annals of fuzzy mathematics and informat-ics, 7(6), 1013-1020.
  • Sezer, A. S. (2012). A new view to ring theory via soft union rings, ideals and bi-ideals. Knowledge-Based Systems, 36, 300-314.
  • Sezer, A. S., & Atagün, A. O. (2016). A new kind of vector space: soft vector space. Southeast asian bulletin of mathematics, 40(5), 753-770.
  • Sezer, A. S., Atagün, A. O., & Çağman, N. (2013). A new view to N-group theory: soft N-groups. Fasciculi mathematici, 51, 123-140.
  • Sezer, A. S., Atagün, A. O., & Çağman, N. (2014). N-group SI-action and its applications to N-Group Theory. Fasciculi mathematici, 52, 139-153.
  • Sezer, A. S., Çağman, N., Atagün, A. O., Ali, M. I., & Türkmen, E. (2015). Soft intersection semigroups, ideals and bi-ideals; a new application on semigroup theory I. Filomat, 29(5), 917-946.
  • Sezer, A. S., Cagman, N., & Atagün, A. O. (2014). Soft Intersection Interior Ideals, Qua-si-ideals and Generalized Bi-Ideals: A New Approach to Semigroup Theory II. J. Multiple Valued Log. Soft Comput., 23(1-2), 161-207.
  • Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra Lett., 2016, Article-ID.
  • Sezgi̇n, A., Atagün, A. O., & Cagan, N. (2025a). A complete study on and-product of soft sets. Sigma journal of engineering and natural sciences, 43(1), 1-14.
  • Sezgin, A., Atagün, A. O., Çağman, N., & Demir, H. (2022). On near-rings with soft union ideals and applications. New mathematics and natural computation, 18(02), 495-511.
  • Sezgin, A. H., & Aybek, F. N. (2023). A New Soft Set Operation: Complementary Soft Bi-nary Piecewise Gamma (Ð Œ¸) Operation. Matrix Science Mathematic (MSMK), 7(1), 27-45.
  • Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023a). A new soft set operation: complementary soft binary piecewise intersection (∩) operation. Black sea journal of engineering and sci-ence, 6(4), 330-346.
  • Sezgin, A., Aybek, F. N., & Güngör, N. B. (2023b). New soft set operation: Complementary soft binary piecewise union operation. Acta informatica malaysia, 7(1), 38-53.
  • Sezgin, A., & Cagman, N. (2024). A new soft set operation: complementary soft binary piecewise difference (\) operation. Osmaniye korkut ata üniversitesi fen bilimleri enstitüsü dergisi, 7(1), 58-94.
  • Sezgin, A., & Çağman, N. (2025). An Extensive Study on Restricted and Extended Symmet-ric Difference Operations of Soft Sets. Utilitas Mathematica.
  • Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product. Applied soft computing, 54, 366-392.
  • Sezgin, A., Çağman, N., Atagün, A. O., & Aybek, F. N. (2023c). Complemental binary opera-tions of sets and their application to group theory. Matrix science mathematic, 7(2), 114-121.
  • Sezgin, A., & Çalışıcı, H. (2024). A comprehensive study on soft binary piecewise difference operation. Eskişehir teknik üniversitesi bilim ve teknoloji dergisi b-teorik bilimler, 12(1), 32-54.
  • Sezgin, A., & Dagtoros, K. (2023). Complementary soft binary piecewise symmetric differ-ence operation: A novel soft set operation. Scientific journal of mehmet akif ersoy universi-ty, 6(2), 31-45.
  • Sezgin, A., & Demirci, A. M. (2023). A new soft set operation: complementary soft binary piecewise star (*) operation. Ikonion journal of mathematics, 5(2), 24-52. Sezgin, A., Durak, İ., & Ay, Z. (2025b). Some New Classifications of Soft Subsets and Soft Equalities with Soft Symmetric Difference-Difference Product of Groups. Amesia, 6(1), 16-32.
  • Sezgin, A., & İlgin, A. (2024a). Soft intersection almost subsemigroups of semi-groups. International journal of mathematics and physics, 15(1), 13-20.
  • Sezgin, A., & İlgin, A. (2024b). Soft intersection almost ideals of semigroups. Journal of in-novative engineering and natural science, 4(2), 466-481.
  • Sezgin, A., & Onur, B. (2024). Soft intersection almost bi-ideals of semigroups. Systemic ana-lytics, 2(1), 95-105.
  • Sezgin, A., Onur, B. & İlgin, A. (2024a). Soft intersection almost tri-ideals of semigroups. SciNexuses, 1, 126-138.
  • Sezgin, A., & Orbay, M. (2022). Analysis of semigroups with soft intersection ideals. Acta universitatis sapientiae, mathematica, 14(1).
  • Sezgin, A., & Sarialioğlu, M. (2024). A new soft set operation: Complementary soft binary piecewise theta (θ) operation. Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 4(2), 325-357.
  • Sezgin, A., & Sarıalioğlu, M. (2024). Complementary extended gamma operation: A new soft set operation. Natural and Applied Sciences Journal, 7(1), 15-44.
  • Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: Extended dif-ference of soft sets. Journal of new theory, (27), 33-42.
  • Sezgin, A., & Şenyiğit, E. (2025). A new product for soft sets with its decision-making: Soft star-product. Big data and computing visions, 5(1), 52-73. Sezgin, A., & Yavuz, E. (2023a). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin erbakan üniversitesi fen ve mühendislik bilimleri dergisi, 5(2), 189-208.
  • Sezgin, A., & Yavuz, E. (2023b). A new soft set operation: complementary soft binary piece-wise lamda (λ) operation. Sinop üniversitesi fen bilimleri dergisi, 8(2), 101-133.
  • Sezgin, A., & Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets. Uncertainty Discourse and Applications, 1 (1): 79-100.
  • Sezgin, A., Yavuz, E., & Özlü, Ş. (2024b). Insight into soft binary piecewise lambda opera-tion: a new operation for soft sets. Journal of umm al-qura university for applied sciences, 1-15.
  • Singh, D., & Onyeozili, I. A. (2012a). Notes on soft matrices operations. ARPN Journal of science and technology, 2(9), 861-869.
  • Singh, D., & A Onyeozili, I. (2012b). On some new properties of soft set opera-tions. International journal of computer applications, 59(4), 39-44.
  • Singh, D., & Onyeozili, I. A. (2012c). Some results on distributive and absorption properties on soft operations. IOSR journal of mathematics, 4(2), 18-30.
  • Singh, D., & Onyeozili, I. A. (2012d). Some conceptual misunderstanding of the fundamen-tals of soft set theory. ARPN journal of systems and software, 2(9), 251-254.
  • Stojanović, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779-791.
  • Sahin, R., & Kuçuk, A. (2013). Soft filters and their convergence properties. Ann. Fuzzy Math. Inform, 6(3), 529-543. Tunçay, M., & Sezgin, A. (2016). Soft union ring and its applications to ring theo-ry. International journal of computer applications, 151(9), 7-13.
  • Ullah, A., Karaaslan, F., & Ahmad, I. (2018). Soft uni-Abel-Grassmann's groups. European Journal of Pure and Applied Mathematics, 11(2), 517-536.
  • Yang, C. F. (2008). A note on “soft set theory”[comput. math. appl. 45 (4–5)(2003) 555–562]. Computers & mathematics with applications, 56(7), 1899-1900.
  • Yang, J., & Yao, Y. (2020). Semantics of soft sets and three-way decision with soft sets. Knowledge-based systems, 194, 105538.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Zhu, P., & Wen, Q. (2013). Operations on soft sets revisited. Journal of applied mathemat-ics, 2013(1), 105752.

Grupların esnek birleşim-lamda çarpımı

Year 2025, Volume: 9 Issue: 2, 64 - 82, 30.09.2025
https://doi.org/10.30516/bilgesci.1727597

Abstract

Esnek küme teorisi, belirsizlik, epistemik kararsızlık ve parametreye bağlı değişkenlik gibi niteliklerle tanımlanan sistemlerin modellenmesinde mantıksal olarak tutarlı ve cebirsel açıdan zengin bir çerçeve sunar. Bu çalışma, parametre kümesi grup olan yapılarla donatılmış esnek kümeler üzerinde tanımlanan yeni bir ikili işlem olan esnek birleşim–lambda çarpımı’nı tanıtmaktadır. Sıkı biçimde yapılandırılmış aksiyomatik bir çerçevede geliştirilen bu işlem, genelleştirilmiş esnek altkümelik ve esnek eşitlik kavramlarıyla tam uyum içinde olduğu gösterilmiştir. İşlemin temel yapısal özelliklerini—kapalılık, birleşmelilik, değişmelilik, idempotentlik ve diğer esnek küme işlemleri üzerindeki dağılım özelliği dahil olmak üzere—ortaya koymak amacıyla kapsamlı bir cebirsel inceleme gerçekleştirilmiştir. Ayrıca, bu işlemin birim, yutan, boş ve mutlak esnek kümelerle olan ilişkisi ayrıntılı biçimde analiz edilmiştir. Elde edilen bulgular, esnek birleşim–lambda çarpımının grup-yapılı parametre alanlarının dayattığı tüm cebirsel kısıtlamalara uyduğunu ve böylece esnek kümeler evreni üzerinde tutarlı ve içsel olarak bütünlüklü bir cebirsel yapı oluşturduğunu göstermektedir. Bu işlemin kuramsal açıdan sunduğu temel katkıların ötesinde, önerilen yaklaşım esnek küme teorisinin biçimsel araç setini önemli ölçüde genişletmekte ve genelleştirilmiş bir esnek grup teorisinin gelişimine zemin hazırlamaktadır. Ayrıca, esnek eşitlik ve esnek içerme gibi temel ilişkisel yapılarla biçimsel uyumu, bu işlemin soyut cebirsel modelleme, belirsizlik duyarlı sınıflandırma ve çok ölçütlü karar analizleri gibi çeşitli analitik bağlamlarda uygulanabilirliğini öne çıkarmaktadır. Bu doğrultuda, çalışmanın bulguları hem derin kuramsal ilerlemeler hem de pratik uygulamalara yönelik somut yollar sunmaktadır.

References

  • Abbas, M., Ali, B., & Romaguera, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191-1203.
  • Abbas, M., Ali, M. I., & Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955-5964.
  • Akram, M., Amjad, U., Alcantud, J. C. R., & Santos-García, G. (2023). Complex fermatean fuzzy N-soft sets: a new hybrid model with applications. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8765-8798.
  • Aktaş, H., & Çağman, N. (2007). Soft sets and soft groups. Information sciences, 177(13), 2726-2735.
  • Alcantud, J. C. R. (2022a). The semantics of N-soft sets, their applications, and a coda about three-way decision. Information Sciences, 606, 837-852. Alcantud, J. C. R. (2022b). Convex soft geometries. Journal of Computational and Cognitive Engineering, 1(1), 2-12.
  • Alcantud, J. C. R., Khameneh, A. Z., Santos-García, G., & Akram, M. (2024). A systematic literature review of soft set theory. Neural Computing and Applications, 36(16), 8951-8975.
  • Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547-1553.
  • Ali, M. I., Mahmood, T., Rehman, M. M. U., & Aslam, M. F. (2015). On lattice ordered soft sets. Applied soft computing, 36, 499-505.
  • Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M., & George, R. (2022). A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 2636.
  • Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers & mathematics with applications, 61(9), 2647-2654.
  • Al-Shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and gf-soft equality relations. Filomat, 33(11), 3375-3383.
  • Al-Shami, T., & El-Shafei, M. (2020). T-soft equality relation. Turkish journal of mathemat-ics, 44(4), 1427-1441.
  • Ameen, Z. A., & Al Ghour, S. (2023). Cluster soft sets and cluster soft topolo-gies. Computational and Applied Mathematics, 42(8), 337.
  • Atagun, A., Kamaci, H., Tastekin, I., & Sezgin S.A. (2019). P-properties in near-rings. Journal of mathematical and fundamental sciences, 51(2).
  • Atagün, A. O., & Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical sciences letters, 4(3), 235.
  • Atagün, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. Math Sci Letters, 7(1), 37-42.
  • Atagün, A. O., & Sezgin, A. (2017). Int-soft substructures of groups and semirings with ap-plications. Applied mathematics & information sciences, 11(1), 105-113.
  • Atagün, A. O., & Sezgin, A. (2018). A new view to near-ring theory: soft near-rings. South east asian journal of mathematics & mathematical sciences, 14(3).
  • Atagün, A. O., & Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, 18(01), 195-207.
  • Ay, Z. & Sezgin, A. (2025). Soft intersection-gamma product of groups, International Journal of Innovative Research and Reviews, in press.
  • Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni–int decision making. European journal of operational research, 207(2), 848-855.
  • Eren, Ö. F., & Çalışıcı, H. (2019). On some operations of soft sets. The Fourth International Conference on Computational Mathematics and Engineering Sciences.
  • Feng, F., & Li, Y. (2013). Soft subsets and soft product operations. Information sciences, 232, 44-57.
  • Feng, F., Li, C., Davvaz, B., & Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft computing, 14(9), 899-911.
  • Feng, F., Jun, Y. B., & Zhao, X. (2008). Soft semirings. Computers & Mathematics with Ap-plications, 56(10), 2621-2628.
  • Fu, L. (2011). Notes on soft set operations, ARPN Journal of Systems and Software, 1, 205-208.
  • Ge, X., & Yang, S. (2011). Investigations on some operations of soft sets. World academy of science engineering and technology, 75, 1113-1116.
  • Gulistan, M., & Shahzad, M. (2014). On soft KU-algebras. Journal of Algebra, Number The-ory: Advances and Applications, 11(1), 1-20.
  • Gulistan, M., Feng, F., Khan, M., & Sezgin, A. (2018). Characterizations of right weakly reg-ular semigroups in terms of generalized cubic soft sets. Mathematics, 6(12), 293.
  • Jana, C., Pal, M., Karaaslan, F., & Sezgi̇n, A. (2019). (α, β)-Soft Intersectional Rings and Ide-als with their Applications. New mathematics and natural computation, 15(02), 333-350.
  • Jiang, Y., Tang, Y., Chen, Q., Wang, J., & Tang, S. (2010). Extending soft sets with descrip-tion logics. Computers & mathematics with applications, 59(6), 2087-2096.
  • Jun, Y. B., & Yang, X. (2011). A note on the paper “Combination of interval-valued fuzzy set and soft set”[Comput. Math. Appl. 58 (2009) 521–527]. Computers & mathematics with ap-plications, 61(5), 1468-1470.
  • Karaaslan, F. (2019). Some properties of AG*-groupoids and AG-bands under SI-product operation. Journal of Intelligent & Fuzzy Systems, 36(1), 231-239.
  • Kaygisiz, K. (2012). On soft int-groups. Annals of fuzzy mathematics and informatics, 4(2), 363-375.
  • Khan, M. J., Alcantud, J. C. R., Akram, M., & Ding, W. (2025). Separable N-soft sets: A tool for multinary descriptions with large-scale parameter sets. Applied Intelligence, 55(6), 561.
  • Khan, M., Ilyas, F., Gulistan, M., & Anis, S. (2015). A study of fuzzy soft AG-groupoids. Annals of Fuzzy Mathematics and Informatics, 9(4), 621-638.
  • Khan, A., Izhar, M., & Sezign, A. (2017). Characterizations of Abel Grassmann's Groupoids by the properties of their double-framed soft ideals. International journal of analysis and ap-plications, 15(1), 62-74.
  • Liu, X., Feng, F., & Jun, Y. B. (2012). A note on generalized soft equal relations. Computers & mathematics with applications, 64(4), 572-578.
  • Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4-5), 555-562.
  • Mahmood, T., Waqas, A., & Rana, M. A. (2015). Soft intersectional ideals in ternary semir-ings. Science international, 27(5), 3929-3934.
  • Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of mathematics, 26(3), 503-517.
  • Manikantan, T., Ramasany, P., & Sezgin, A. (2023). Soft quasi-ideals of soft near-rings. Sigma journal of engineering and natural science, 41(3), 565-574.
  • Memiş, S. (2022). Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of new theory, (38), 1-13.
  • Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applica-tions, 37(4-5), 19-31.
  • Mustuoglu, E., Sezgin, A., & Türk, Z. K. (2016). Some characterizations on soft uni-groups and normal soft uni-groups. International journal of computer applications, 155(10), 1-8.
  • Neog, T. J., & Sut, D. K. (2011). A new approach to the theory of soft sets. International journal of computer applications, 32(2), 1-6.
  • Onyeozili, I. A., & Gwary, T. M. (2014). A study of the fundamentals of soft set theo-ry. International journal of scientific and technology research, 3(4), 132-143.
  • Özlü, Ş., & Sezgin, A. (2020). Soft covered ideals in semigroups. Acta Universitatis Sapientiae Mathematica, 12(2), 317-346.
  • Pei, D., & Miao, D. (2005, July). From soft sets to information systems. In 2005 IEEE inter-national conference on granular computing (Vol. 2, pp. 617-621). IEEE.
  • Riaz, M., Hashmi, M., Karaaslan, F., Sezgin, A., Mohammed, M., & Khalaf, M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. Computer modeling in engineering & sciences, 136(2), 1759.
  • Qin, K., & Hong, Z. (2010). On soft equality. Journal of computational and applied mathe-matics, 234(5), 1347-1355.
  • Santos‐García, G., & Alcantud, J. C. R. (2023). Ranked soft sets. Expert Systems, 40(6), e13231.
  • Sen, J. (2014). On algebraic structure of soft sets. Annals of fuzzy mathematics and informat-ics, 7(6), 1013-1020.
  • Sezer, A. S. (2012). A new view to ring theory via soft union rings, ideals and bi-ideals. Knowledge-Based Systems, 36, 300-314.
  • Sezer, A. S., & Atagün, A. O. (2016). A new kind of vector space: soft vector space. Southeast asian bulletin of mathematics, 40(5), 753-770.
  • Sezer, A. S., Atagün, A. O., & Çağman, N. (2013). A new view to N-group theory: soft N-groups. Fasciculi mathematici, 51, 123-140.
  • Sezer, A. S., Atagün, A. O., & Çağman, N. (2014). N-group SI-action and its applications to N-Group Theory. Fasciculi mathematici, 52, 139-153.
  • Sezer, A. S., Çağman, N., Atagün, A. O., Ali, M. I., & Türkmen, E. (2015). Soft intersection semigroups, ideals and bi-ideals; a new application on semigroup theory I. Filomat, 29(5), 917-946.
  • Sezer, A. S., Cagman, N., & Atagün, A. O. (2014). Soft Intersection Interior Ideals, Qua-si-ideals and Generalized Bi-Ideals: A New Approach to Semigroup Theory II. J. Multiple Valued Log. Soft Comput., 23(1-2), 161-207.
  • Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra Lett., 2016, Article-ID.
  • Sezgi̇n, A., Atagün, A. O., & Cagan, N. (2025a). A complete study on and-product of soft sets. Sigma journal of engineering and natural sciences, 43(1), 1-14.
  • Sezgin, A., Atagün, A. O., Çağman, N., & Demir, H. (2022). On near-rings with soft union ideals and applications. New mathematics and natural computation, 18(02), 495-511.
  • Sezgin, A. H., & Aybek, F. N. (2023). A New Soft Set Operation: Complementary Soft Bi-nary Piecewise Gamma (Ð Œ¸) Operation. Matrix Science Mathematic (MSMK), 7(1), 27-45.
  • Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023a). A new soft set operation: complementary soft binary piecewise intersection (∩) operation. Black sea journal of engineering and sci-ence, 6(4), 330-346.
  • Sezgin, A., Aybek, F. N., & Güngör, N. B. (2023b). New soft set operation: Complementary soft binary piecewise union operation. Acta informatica malaysia, 7(1), 38-53.
  • Sezgin, A., & Cagman, N. (2024). A new soft set operation: complementary soft binary piecewise difference (\) operation. Osmaniye korkut ata üniversitesi fen bilimleri enstitüsü dergisi, 7(1), 58-94.
  • Sezgin, A., & Çağman, N. (2025). An Extensive Study on Restricted and Extended Symmet-ric Difference Operations of Soft Sets. Utilitas Mathematica.
  • Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product. Applied soft computing, 54, 366-392.
  • Sezgin, A., Çağman, N., Atagün, A. O., & Aybek, F. N. (2023c). Complemental binary opera-tions of sets and their application to group theory. Matrix science mathematic, 7(2), 114-121.
  • Sezgin, A., & Çalışıcı, H. (2024). A comprehensive study on soft binary piecewise difference operation. Eskişehir teknik üniversitesi bilim ve teknoloji dergisi b-teorik bilimler, 12(1), 32-54.
  • Sezgin, A., & Dagtoros, K. (2023). Complementary soft binary piecewise symmetric differ-ence operation: A novel soft set operation. Scientific journal of mehmet akif ersoy universi-ty, 6(2), 31-45.
  • Sezgin, A., & Demirci, A. M. (2023). A new soft set operation: complementary soft binary piecewise star (*) operation. Ikonion journal of mathematics, 5(2), 24-52. Sezgin, A., Durak, İ., & Ay, Z. (2025b). Some New Classifications of Soft Subsets and Soft Equalities with Soft Symmetric Difference-Difference Product of Groups. Amesia, 6(1), 16-32.
  • Sezgin, A., & İlgin, A. (2024a). Soft intersection almost subsemigroups of semi-groups. International journal of mathematics and physics, 15(1), 13-20.
  • Sezgin, A., & İlgin, A. (2024b). Soft intersection almost ideals of semigroups. Journal of in-novative engineering and natural science, 4(2), 466-481.
  • Sezgin, A., & Onur, B. (2024). Soft intersection almost bi-ideals of semigroups. Systemic ana-lytics, 2(1), 95-105.
  • Sezgin, A., Onur, B. & İlgin, A. (2024a). Soft intersection almost tri-ideals of semigroups. SciNexuses, 1, 126-138.
  • Sezgin, A., & Orbay, M. (2022). Analysis of semigroups with soft intersection ideals. Acta universitatis sapientiae, mathematica, 14(1).
  • Sezgin, A., & Sarialioğlu, M. (2024). A new soft set operation: Complementary soft binary piecewise theta (θ) operation. Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 4(2), 325-357.
  • Sezgin, A., & Sarıalioğlu, M. (2024). Complementary extended gamma operation: A new soft set operation. Natural and Applied Sciences Journal, 7(1), 15-44.
  • Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: Extended dif-ference of soft sets. Journal of new theory, (27), 33-42.
  • Sezgin, A., & Şenyiğit, E. (2025). A new product for soft sets with its decision-making: Soft star-product. Big data and computing visions, 5(1), 52-73. Sezgin, A., & Yavuz, E. (2023a). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin erbakan üniversitesi fen ve mühendislik bilimleri dergisi, 5(2), 189-208.
  • Sezgin, A., & Yavuz, E. (2023b). A new soft set operation: complementary soft binary piece-wise lamda (λ) operation. Sinop üniversitesi fen bilimleri dergisi, 8(2), 101-133.
  • Sezgin, A., & Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets. Uncertainty Discourse and Applications, 1 (1): 79-100.
  • Sezgin, A., Yavuz, E., & Özlü, Ş. (2024b). Insight into soft binary piecewise lambda opera-tion: a new operation for soft sets. Journal of umm al-qura university for applied sciences, 1-15.
  • Singh, D., & Onyeozili, I. A. (2012a). Notes on soft matrices operations. ARPN Journal of science and technology, 2(9), 861-869.
  • Singh, D., & A Onyeozili, I. (2012b). On some new properties of soft set opera-tions. International journal of computer applications, 59(4), 39-44.
  • Singh, D., & Onyeozili, I. A. (2012c). Some results on distributive and absorption properties on soft operations. IOSR journal of mathematics, 4(2), 18-30.
  • Singh, D., & Onyeozili, I. A. (2012d). Some conceptual misunderstanding of the fundamen-tals of soft set theory. ARPN journal of systems and software, 2(9), 251-254.
  • Stojanović, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779-791.
  • Sahin, R., & Kuçuk, A. (2013). Soft filters and their convergence properties. Ann. Fuzzy Math. Inform, 6(3), 529-543. Tunçay, M., & Sezgin, A. (2016). Soft union ring and its applications to ring theo-ry. International journal of computer applications, 151(9), 7-13.
  • Ullah, A., Karaaslan, F., & Ahmad, I. (2018). Soft uni-Abel-Grassmann's groups. European Journal of Pure and Applied Mathematics, 11(2), 517-536.
  • Yang, C. F. (2008). A note on “soft set theory”[comput. math. appl. 45 (4–5)(2003) 555–562]. Computers & mathematics with applications, 56(7), 1899-1900.
  • Yang, J., & Yao, Y. (2020). Semantics of soft sets and three-way decision with soft sets. Knowledge-based systems, 194, 105538.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Zhu, P., & Wen, Q. (2013). Operations on soft sets revisited. Journal of applied mathemat-ics, 2013(1), 105752.
There are 95 citations in total.

Details

Primary Language English
Subjects Statistics (Other)
Journal Section Research Articles
Authors

İbrahim Durak 0009-0002-7838-078X

Aslıhan Sezgin 0000-0002-1519-7294

Publication Date September 30, 2025
Submission Date June 26, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Durak, İ., & Sezgin, A. (2025). Soft Union-lambda Product of Groups. Bilge International Journal of Science and Technology Research, 9(2), 64-82. https://doi.org/10.30516/bilgesci.1727597