Research Article
BibTex RIS Cite

Elektron Veren Gruplar (–NH₂) ve (–Cl) Sübstitüentlerinin Bağlanmasıyla Pirolün İletkenlik Özelliklerinin İncelenmesi

Year 2025, Volume: 9 Issue: 2, 154 - 173, 30.09.2025
https://doi.org/10.30516/bilgesci.1742388

Abstract

Bilim ve teknolojideki hızlı gelişmeler, farklı fiziksel ve kimyasal özelliklere sahip, üretimi kolay ve geniş uygulama alanlarına hitap eden yeni malzemelerin üretilmesi gerekliliğini doğurmuştur. İletken polimerler, iletkenlik özelliklerini değiştirmek amacıyla kullanılabilir. Bu değişimi sağlamak için kullanılan yöntemlerden biri, monomere farklı sübstitüentler eklemektir. Bu amaçla, 1-(4-metilfenil)pirol ve 3-(4-metilfenil)pirol bileşiklerinde, fenil grubundaki metil gruplarının yerine elektron veren gruplar (–NH₂ ve –Cl) yerleştirilerek HOMO-LUMO aralığı ölçülmüştür. Sübstitüe edilmiş fenil grubunun azot pozisyonuna mı yoksa karbon pozisyonuna mı bağlandığı durumlar, Gaussian16 yazılım paketi kullanılarak hesaplanmıştır. Elde edilen yapılar, zincir uzunluğu n=1’den n=5’e kadar artırılarak optimize edilmiştir. Ayrıca, etkileşimlerin topolojik özellikleri, elektron yoğunluklarına göre karşılaştırılmıştır. Elektron veren grupların HOMO enerjisini artırıp LUMO enerjisini düşürdüğü, böylece bant aralığını daraltarak iletkenliği artırdığı gözlemlenmiştir. Elektron yoğunluklarının iletkenliğe zıt yönde değişim göstermesi, AIM teorisinin iletkenliğin belirlenmesinde tercih edilebilir ve güvenilir bir yöntem olduğunu ortaya koymaktadır. –Cl ve –NH₂ sübstitüentlerinin eklenmesi, IR spektral özelliklerinde önemli değişikliklere yol açmaktadır. Takip eden polimerleşme ile bant yoğunluklarında artış ve genişleme gözlemlenmiş; 1- ve 3- izomerik formlar arasında küçük fakat fark edilir frekans ve şiddet kaymaları tespit edilmiştir.

Project Number

1919B012215276

References

  • Benjamin, P.J.L.C., Ratcliffe, N.M., Sivanand, P.S. (2003). The Synthesis of Novel 3-Sübstitüed Pyrrole Monomers Possessing Chiral Side Groups: A Study of Their Chemical Polymerisation and The Assessment of Their Chiral Discrimination Properties. Synth Met. 139, 43-55. http://dx.doi.org/10.1016/S0379-6779(02)01247-X.
  • Callegari, A., Pearman, R., Choi, S., Engels, P., Srivastava, H., Gruebele, M., Lehmann, K.K., Scoleset, G. (2003). Intramolecular Vibrational Relaxation in Aromatic Molecules 2: An Experimental and Computational Study of Pyrrole and Triazine Near the IVR Threshold. Molecular Physics. 101, 551-568. https://doi.org/10.1080/0026897021000014910.
  • Chaudhry, A.R., Ahmed, R., Irfan, A., Shaari, A., Al-Sehemi, A.G. (2013). Quantum Chemical Approach Toward the Electronic, Photophysical and Charge Transfer Properties of The Materials Used in Organic Field-Effect Transistors. Materials Chemistry and Physics. 138, 468-478. https://doi.org/10.1016/j.matchemphys.2012.11.075.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. Gaussian 16 Rev. C.01. (2016). Wallingford, CT. Guimard, N.K., Gomez, N., Schmidt, C.E. (2007). Conducting Polymers in Biomedical Engineering. Progress in Polymer Science. 32, 876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012.
  • Grabowski, S.J., Krygowski, T.M., Leszczynski, J. (2009). An Analysis of Sübstitüent Effects in Ethane Derivatives: The Quantum Theory of Atoms in Molecules Approach. Journal of Physical Chemistry A. 113, 1105-1110. https://doi.org/10.1021/jp807549p.
  • Koepnick, B.D., Lipscomb, J.S., Taylor, D.K. (2010). Effect of Sübstitütion on the Optical Properties and HOMO-LUMO Gap of Oligomeric Paraphenylenes. Journal of Physical Chemistry A. 114, 13228-13233. https://doi.org/10.1021/jp108619n.
  • Kon, A.B., Foos, J.S., Rose, T.L. (1992). Synthesis and Properties of Poly(3- hydroquinonylpyrrole). Chemistry of Materials. 4, 416-424. https://doi.org/10.1021/cm00020a034.
  • Lim, Y.L., Yang, Y.Q., Kim, D.H., Lee, Y.S. (2013). Alternating Copolymers Consisting of Dialkoxylated Naphthalene along with Either Dithiophenylated 1,4- Dioxopyrrolo-[3,4c]-pyrrole or 5H-thieno-[3,4c]-pyrrole-4,6-dione: Synthesis and Photo Electrochemical Properties. Bulletin of the Korean Chemical Society. 34, 313-316. https://doi.org/10.5012/bkcs.2013.34.1.313.
  • Prathapa, S.J., Held J., Smaalen S.V. (2013). Topological Properties of Chemical Bonds from Static and Dynamic Electron Densities. Zeitschrift für Anorganische und Allgemeine Chemie. 639, 2047-2056. https://doi.org/10.1002/zaac.201200535.
  • Radhakrishnan, S., Parthasarathi, R., Subramanian, V., Somanathan, N. (2005). Quantum Chemical Studies on Polytiophenes Containing Heterocyclic Sübstitüents: Effect of Structure on the Band Gap. Journal of Chemical Physics. 123, 164905. https://doi.org/10.1063/1.2072947.
  • Sahu, H., Panda, A.N. (2013). Computational Study on the Effect of Sübstitüent on the Structural and electronic Properties of Tiophene-Pyrrole-Based πConjugated Oligomers. Macromolecules. 46, 844-855. https://doi.org/10.1021/ma3024409.
  • Sakai, K., Suzuki, M., Nunami, K., Yoneda, N., Onoda, Y., Iwasawa, Y. (1980). Syntheses of 3-substituted Pyrrole Derivatives with Antiinflammatory Activity. Chemical and Pharmaceutical Bulletin. 28, 2384-2393. https://doi.org/10.1248/cpb.28.2384. Sarı, B., Gök, A., Şahin, D. (2006). Synthesis and Properties of Conducting Polypyrrole, Polyalkylanilines and Composites of Polypyrrole and Poly(2- ethylaniline). Journal of Applied Polymer Scince. 101, 241-249. http://dx.doi.org/10.1002/app.23247.
  • Senevirathne, M.S., Nanayakkara, A., Senadeera, G.K.R. (2011). A theoretical investigation of band gaps of conducting polymers with heterocycles. Journal of the National Science Foundation of Sri Lanka. 39, 183-185.
  • Seo, M.K., Kim, J.B., Seong, S., Shim, Y.K. (1999). Molecular Orbital Calculations for the Reactions of 2,5-dimethyl Pyrrolewith Phenylsulfonyl Chloride. Bulletin of the Korean Chemical Society. 20, 948-952. https://doi.org/10.5012/bkcs.1999.20.8.948.
  • Street, G.B., Clarke, T.C., Geiss, R.H., Lee, V.Y., Nazzal, A., Pfluger, P., Scott, J.C. (1983). Characterization of Polypyrrole. Journal de Physique Colloques. 44, 599-606. https://dx.doi.org/10.1051/jphyscol:19833120. Todd, A., Keith, T.K. Gristmill Software, Overland Park KS, USA, (2012). Available from: https://aim.tkgristmill.com.
  • Tuzun, N.S., Bayata, F., Sarac, A.S. (2008). An Experimental and Quantum Mechanical Study on Electrochemical Properties of N-Sübstitüted Pyrroles. J Mol Struct THEOCHEM. 857, 95-104. https://doi.org/10.1016/j.theochem.2008.02.007.
  • Wang, L.X., Li, X.G., Yang, Y.L. (2001). Preparation, Properties and Applications of Polypyrroles. Reactive and Functional Polymers. 47, 125-139. http://dx.doi.org/10.1016/S1381-5148(00)00079-1.
  • Zade, S.S., Bendikov, M. (2006). From Oligomers to Polymer: Convergence in the HOMO-LUMO Gaps of Conjugated Oligomers. Organic Letters. 8, 5243-5246. https://doi.org/10.1021/ol062030y.

Investigation of the Conductivity Properties of Pyrrole with the Attachment of Electron-Donating Groups (–NH2) and (–Cl) as Substituents

Year 2025, Volume: 9 Issue: 2, 154 - 173, 30.09.2025
https://doi.org/10.30516/bilgesci.1742388

Abstract

The rapid advancements in science and technology have created the need for the production of new materials with distinct physical and chemical properties, ease of production, and a wide range of applications. Conductive polymers can be used to modify conductivity properties. One method for achieving this modification is by adding different substituents to the monomer. For this purpose, the HOMO-LUMO gap was measured by substituting electron-donating groups (–NH2 and –Cl) in place of the methyl groups in the phenyl groups of 1-(4-methylphenyl)pyrrole and 3-(4-methylphenyl)pyrrole. The interactions when the substituted phenyl group was attached at the nitrogen position or the carbon position were calculated using the Gaussian16 software package. The configurations obtained were optimized by increasing the chain length from n=1 to n=5. Additionally, the topological properties of the interactions were compared based on electron densities. It was observed that electron-donating groups increased the HOMO energy and decreased the LUMO energy, thereby reducing the band gap and enhancing conductivity. The fact that electron densities are in the opposite direction to conductivity shows that AIM theory is a preferable and reliable method for determining conductivity. The incorporation of –Cl and –NH₂ substituents leads to significant changes in the IR spectral properties. Subsequent polymerization results in changes in band intensity and broadening, with small but noticeable frequency and intensity shifts observed between the 1 and 3 isomeric forms.

Supporting Institution

TÜBİTAK 2209-A University Students Research Projects Support Program

Project Number

1919B012215276

Thanks

This study was supported within the scope of the TÜBİTAK 2209-A University Students Research Projects Support Program under project number 1919B012215276. We thank TÜBİTAK for its support. The authors would like to thank Prof. Dr. Nevin Aytemiz for her support in using the AIMAll package program. The numerical calculations in this article were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  • Benjamin, P.J.L.C., Ratcliffe, N.M., Sivanand, P.S. (2003). The Synthesis of Novel 3-Sübstitüed Pyrrole Monomers Possessing Chiral Side Groups: A Study of Their Chemical Polymerisation and The Assessment of Their Chiral Discrimination Properties. Synth Met. 139, 43-55. http://dx.doi.org/10.1016/S0379-6779(02)01247-X.
  • Callegari, A., Pearman, R., Choi, S., Engels, P., Srivastava, H., Gruebele, M., Lehmann, K.K., Scoleset, G. (2003). Intramolecular Vibrational Relaxation in Aromatic Molecules 2: An Experimental and Computational Study of Pyrrole and Triazine Near the IVR Threshold. Molecular Physics. 101, 551-568. https://doi.org/10.1080/0026897021000014910.
  • Chaudhry, A.R., Ahmed, R., Irfan, A., Shaari, A., Al-Sehemi, A.G. (2013). Quantum Chemical Approach Toward the Electronic, Photophysical and Charge Transfer Properties of The Materials Used in Organic Field-Effect Transistors. Materials Chemistry and Physics. 138, 468-478. https://doi.org/10.1016/j.matchemphys.2012.11.075.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. Gaussian 16 Rev. C.01. (2016). Wallingford, CT. Guimard, N.K., Gomez, N., Schmidt, C.E. (2007). Conducting Polymers in Biomedical Engineering. Progress in Polymer Science. 32, 876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012.
  • Grabowski, S.J., Krygowski, T.M., Leszczynski, J. (2009). An Analysis of Sübstitüent Effects in Ethane Derivatives: The Quantum Theory of Atoms in Molecules Approach. Journal of Physical Chemistry A. 113, 1105-1110. https://doi.org/10.1021/jp807549p.
  • Koepnick, B.D., Lipscomb, J.S., Taylor, D.K. (2010). Effect of Sübstitütion on the Optical Properties and HOMO-LUMO Gap of Oligomeric Paraphenylenes. Journal of Physical Chemistry A. 114, 13228-13233. https://doi.org/10.1021/jp108619n.
  • Kon, A.B., Foos, J.S., Rose, T.L. (1992). Synthesis and Properties of Poly(3- hydroquinonylpyrrole). Chemistry of Materials. 4, 416-424. https://doi.org/10.1021/cm00020a034.
  • Lim, Y.L., Yang, Y.Q., Kim, D.H., Lee, Y.S. (2013). Alternating Copolymers Consisting of Dialkoxylated Naphthalene along with Either Dithiophenylated 1,4- Dioxopyrrolo-[3,4c]-pyrrole or 5H-thieno-[3,4c]-pyrrole-4,6-dione: Synthesis and Photo Electrochemical Properties. Bulletin of the Korean Chemical Society. 34, 313-316. https://doi.org/10.5012/bkcs.2013.34.1.313.
  • Prathapa, S.J., Held J., Smaalen S.V. (2013). Topological Properties of Chemical Bonds from Static and Dynamic Electron Densities. Zeitschrift für Anorganische und Allgemeine Chemie. 639, 2047-2056. https://doi.org/10.1002/zaac.201200535.
  • Radhakrishnan, S., Parthasarathi, R., Subramanian, V., Somanathan, N. (2005). Quantum Chemical Studies on Polytiophenes Containing Heterocyclic Sübstitüents: Effect of Structure on the Band Gap. Journal of Chemical Physics. 123, 164905. https://doi.org/10.1063/1.2072947.
  • Sahu, H., Panda, A.N. (2013). Computational Study on the Effect of Sübstitüent on the Structural and electronic Properties of Tiophene-Pyrrole-Based πConjugated Oligomers. Macromolecules. 46, 844-855. https://doi.org/10.1021/ma3024409.
  • Sakai, K., Suzuki, M., Nunami, K., Yoneda, N., Onoda, Y., Iwasawa, Y. (1980). Syntheses of 3-substituted Pyrrole Derivatives with Antiinflammatory Activity. Chemical and Pharmaceutical Bulletin. 28, 2384-2393. https://doi.org/10.1248/cpb.28.2384. Sarı, B., Gök, A., Şahin, D. (2006). Synthesis and Properties of Conducting Polypyrrole, Polyalkylanilines and Composites of Polypyrrole and Poly(2- ethylaniline). Journal of Applied Polymer Scince. 101, 241-249. http://dx.doi.org/10.1002/app.23247.
  • Senevirathne, M.S., Nanayakkara, A., Senadeera, G.K.R. (2011). A theoretical investigation of band gaps of conducting polymers with heterocycles. Journal of the National Science Foundation of Sri Lanka. 39, 183-185.
  • Seo, M.K., Kim, J.B., Seong, S., Shim, Y.K. (1999). Molecular Orbital Calculations for the Reactions of 2,5-dimethyl Pyrrolewith Phenylsulfonyl Chloride. Bulletin of the Korean Chemical Society. 20, 948-952. https://doi.org/10.5012/bkcs.1999.20.8.948.
  • Street, G.B., Clarke, T.C., Geiss, R.H., Lee, V.Y., Nazzal, A., Pfluger, P., Scott, J.C. (1983). Characterization of Polypyrrole. Journal de Physique Colloques. 44, 599-606. https://dx.doi.org/10.1051/jphyscol:19833120. Todd, A., Keith, T.K. Gristmill Software, Overland Park KS, USA, (2012). Available from: https://aim.tkgristmill.com.
  • Tuzun, N.S., Bayata, F., Sarac, A.S. (2008). An Experimental and Quantum Mechanical Study on Electrochemical Properties of N-Sübstitüted Pyrroles. J Mol Struct THEOCHEM. 857, 95-104. https://doi.org/10.1016/j.theochem.2008.02.007.
  • Wang, L.X., Li, X.G., Yang, Y.L. (2001). Preparation, Properties and Applications of Polypyrroles. Reactive and Functional Polymers. 47, 125-139. http://dx.doi.org/10.1016/S1381-5148(00)00079-1.
  • Zade, S.S., Bendikov, M. (2006). From Oligomers to Polymer: Convergence in the HOMO-LUMO Gaps of Conjugated Oligomers. Organic Letters. 8, 5243-5246. https://doi.org/10.1021/ol062030y.
There are 18 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Zafer Maşlakcı 0000-0002-3661-8510

Ayşin Adin 0009-0009-6032-4561

Project Number 1919B012215276
Publication Date September 30, 2025
Submission Date July 14, 2025
Acceptance Date September 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Maşlakcı, Z., & Adin, A. (2025). Investigation of the Conductivity Properties of Pyrrole with the Attachment of Electron-Donating Groups (–NH2) and (–Cl) as Substituents. Bilge International Journal of Science and Technology Research, 9(2), 154-173. https://doi.org/10.30516/bilgesci.1742388