Research Article
BibTex RIS Cite
Year 2022, , 50 - 55, 30.12.2022
https://doi.org/10.51539/biotech.1182838

Abstract

References

  • 1. Braunwald E, Congestive Heart Failure: A Half-Century Perspective, Europian Heart Journal 22: 825-836, 2001.
  • 2. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al., Heart Failure Association. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure, Turk Kardiyol Dern Ars 40:77–137, 2012.
  • 3. Sari I, Çavuşoğlu Y, Temizhan A, Yilmaz MB, Eren M. ESC and ACC/AHA/HFSA heart failure guideline updates: Changes, similarities, differences, and unresolved issues, Turk Kardiyol Dern Ars 44(8):625–36, 2016. [CrossRef]
  • 4. Tokgözoğlu L, Yılmaz MB, Abacı A, Altay H, Atalar E, Aydoğdu S, et al. Türkiye’de kalp yetersizliği yol haritası, 2018
  • 5. Değertekin M, Erol Ç, Ergene O, et al., Heart failure prevalence and predictors in Turkey: HAPPY study, Arch Turk Soc Cardiol 40: 298-308, 2012.
  • 6. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Méneveau N, et al., Genetic determinants of response to clopidogrel and cardiovascular events, N Engl J Med 360: 363–375, 2009
  • 7. Sangkuhl K, Klein TE, & Altman RB, Clopidogrel pathway, Pharmacogenetics and genomics 20(7): 463, 2010
  • 8. Hoffman SM, Nelson DR., & Keeney DS, Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19, Pharmacogenetics 11:687–698, 2001
  • 9. Gandhi S, Zile B, Tan MK, Saranu J, Bucci C, Yan AT, et al., Increased uptake of guideline-recommended oral antiplatelet therapy: insights from the Canadian Acute Coronary Syndrome Reflective, Can J Cardiol 30:1725– 1731, 2014 [PubMed: 25475475]
  • 10. Bhat IA, Pandith AA, Yaqoob I, Faheem S, Hafeez I, Beig JR, et al., Genetic Determinants of CYP2C19 Gene* 2 and* 3 Loss of Function Alleles and Response to Anti Platelet Therapy (Clopidogrel) and Cardiovascular Events (A Study in Kashmir, North India), Biology and Medicine 7(5):1, 2015
  • 11. Kim KA, Song WK, Kim KR, & Park JY, Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19* 2, CYP2C19* 3, and CYP2C19* 17 alleles. Journal of clinical pharmacy and therapeutics, 35(6): 697-703, 2010
  • 12. Brown SA, & Pereira N, Pharmacogenomic impact of CYP2C19 variation on clopidogrel therapy in precision cardiovascular medicine, Journal of Personalized Medicine, 2018
  • 13. Kurihara AHK, Kazui M, Ishizuka T, Farid NA, Ikeda T, In vitro metabolism of antiplatelet agent clopidogrel: cytochrome P450 isoforms responsible for two oxidation steps involved in the active metabolite formation, Drug Metab Rev 37:99, 2005
  • 14. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al., Cytochrome p-450 polymorphisms and response to clopidogrel, N Engl J Med 360:354–362, 2009
  • 15. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, & Pollin TI, Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy, Jama 302(8): 849-857, 2009
  • 16. https://www.ncbi.nlm.nih.gov/ Access date: 20.07.2022
  • 17. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res 46: 296-303, 2018
  • 18. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, J Comput Chem 25(13):1605-12, 2004
  • 19. www.swissmodel.expasy.org, Access date: 25.07.2022
  • 20. Walker JM. (ed): The Proteomics Protocols Handbook, Humana Press 2005
  • 21. Venselaar H, te Beek TAH, Kuipers RKP, Hekkelman ML, & Vriend G, Protein structure analysis of mutations causing inheritable diseases, An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 2010, https://doi.org/10.1186/1471-2105-11-548
  • 22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of computational chemistry 30(16):2785–91, 2009
  • 23. Yan Y, Tao H, He J, Huang S-Y, The HDOCK server for integrated protein-protein docking, Nature Protocols 2020; doi: https://doi.org/10.1038/s41596-020-0312-x.
  • 24. Chang KY, & Yang JR, Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests, PLoS ONE. 8(8), 2013, https://doi.org/10.1371/journal.pone.0070166
  • 25. FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug 2017.
  • 26. Liu Y, Liu N, Li W, Shao H, Zhi H, & Li J, Relationship of CYP2C19* 2 and CYP2C19* 3 gene polymorphism with clopidogrel response variability and recurrent cardiovascular events in Chinese patients undergoing percutaneous coronary intervention, Pharmacology 91(3-4): 165-172, 2013
  • 27. Siller-Matula JM, Trenk D, Schror K, Gawaz M, Kristensen SD, Storey RF et al., Response variability to P2Y12 receptor inhibitors: expectations and reality. JACC Cardiovasc Interv, 2013
  • 28. Zhuo ZL, Xian HP, Long Y, Liu C, Sun YY, Ma YT, et al., Association between cyp2c19 and abcb1 polymorphisms and clopidogrel resistance in clopidogrel-treated chinese patients, Anatolian Journal of Cardiology 19(2): 123–129, 2018

Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods

Year 2022, , 50 - 55, 30.12.2022
https://doi.org/10.51539/biotech.1182838

Abstract

Single nucleotide polymorphisms cause amino acid change, and protein structure and function are changed. Thus, the patient improves drug resistance and does not respond to therapy. Clopidogrel is an antiplatelet drug and is used for cardiovascular disease therapy such as heart failure, atherosclerosis, and myocardial infarction.CYP2C19 gene is a CYP450 enzyme and metabolizes clopidogrel. Polymorphism of the CYP2C19 gene causes clopidogrel response. A homology modeling study was carried out using the Swiss-Model database and the Chimera program. The selection of models was made with the evaluation of the QMEAN values of the three-dimensional structures. The physicochemical properties of the wild type and CYP2C19*4 mutant type were analyzed by the ExPASy-ProtParam Portal. The effects of the mutation on the protein structure were performed by the HOPE database. The HDock program was used to demonstrate interactions between clopidogrel and wild-type protein and, mutant type protein. Mutation of the residue might disturb this function. This mutation causes the loss of interactions and affects the drug response. In this study, it was shown that Clopidogrel drug interactions between mutant type protein by docking study. Possible drug conformation is designed for the effective treatment of patients carrying the common mutation.

References

  • 1. Braunwald E, Congestive Heart Failure: A Half-Century Perspective, Europian Heart Journal 22: 825-836, 2001.
  • 2. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al., Heart Failure Association. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure, Turk Kardiyol Dern Ars 40:77–137, 2012.
  • 3. Sari I, Çavuşoğlu Y, Temizhan A, Yilmaz MB, Eren M. ESC and ACC/AHA/HFSA heart failure guideline updates: Changes, similarities, differences, and unresolved issues, Turk Kardiyol Dern Ars 44(8):625–36, 2016. [CrossRef]
  • 4. Tokgözoğlu L, Yılmaz MB, Abacı A, Altay H, Atalar E, Aydoğdu S, et al. Türkiye’de kalp yetersizliği yol haritası, 2018
  • 5. Değertekin M, Erol Ç, Ergene O, et al., Heart failure prevalence and predictors in Turkey: HAPPY study, Arch Turk Soc Cardiol 40: 298-308, 2012.
  • 6. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Méneveau N, et al., Genetic determinants of response to clopidogrel and cardiovascular events, N Engl J Med 360: 363–375, 2009
  • 7. Sangkuhl K, Klein TE, & Altman RB, Clopidogrel pathway, Pharmacogenetics and genomics 20(7): 463, 2010
  • 8. Hoffman SM, Nelson DR., & Keeney DS, Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19, Pharmacogenetics 11:687–698, 2001
  • 9. Gandhi S, Zile B, Tan MK, Saranu J, Bucci C, Yan AT, et al., Increased uptake of guideline-recommended oral antiplatelet therapy: insights from the Canadian Acute Coronary Syndrome Reflective, Can J Cardiol 30:1725– 1731, 2014 [PubMed: 25475475]
  • 10. Bhat IA, Pandith AA, Yaqoob I, Faheem S, Hafeez I, Beig JR, et al., Genetic Determinants of CYP2C19 Gene* 2 and* 3 Loss of Function Alleles and Response to Anti Platelet Therapy (Clopidogrel) and Cardiovascular Events (A Study in Kashmir, North India), Biology and Medicine 7(5):1, 2015
  • 11. Kim KA, Song WK, Kim KR, & Park JY, Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19* 2, CYP2C19* 3, and CYP2C19* 17 alleles. Journal of clinical pharmacy and therapeutics, 35(6): 697-703, 2010
  • 12. Brown SA, & Pereira N, Pharmacogenomic impact of CYP2C19 variation on clopidogrel therapy in precision cardiovascular medicine, Journal of Personalized Medicine, 2018
  • 13. Kurihara AHK, Kazui M, Ishizuka T, Farid NA, Ikeda T, In vitro metabolism of antiplatelet agent clopidogrel: cytochrome P450 isoforms responsible for two oxidation steps involved in the active metabolite formation, Drug Metab Rev 37:99, 2005
  • 14. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al., Cytochrome p-450 polymorphisms and response to clopidogrel, N Engl J Med 360:354–362, 2009
  • 15. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, & Pollin TI, Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy, Jama 302(8): 849-857, 2009
  • 16. https://www.ncbi.nlm.nih.gov/ Access date: 20.07.2022
  • 17. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res 46: 296-303, 2018
  • 18. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, J Comput Chem 25(13):1605-12, 2004
  • 19. www.swissmodel.expasy.org, Access date: 25.07.2022
  • 20. Walker JM. (ed): The Proteomics Protocols Handbook, Humana Press 2005
  • 21. Venselaar H, te Beek TAH, Kuipers RKP, Hekkelman ML, & Vriend G, Protein structure analysis of mutations causing inheritable diseases, An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 2010, https://doi.org/10.1186/1471-2105-11-548
  • 22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of computational chemistry 30(16):2785–91, 2009
  • 23. Yan Y, Tao H, He J, Huang S-Y, The HDOCK server for integrated protein-protein docking, Nature Protocols 2020; doi: https://doi.org/10.1038/s41596-020-0312-x.
  • 24. Chang KY, & Yang JR, Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests, PLoS ONE. 8(8), 2013, https://doi.org/10.1371/journal.pone.0070166
  • 25. FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug 2017.
  • 26. Liu Y, Liu N, Li W, Shao H, Zhi H, & Li J, Relationship of CYP2C19* 2 and CYP2C19* 3 gene polymorphism with clopidogrel response variability and recurrent cardiovascular events in Chinese patients undergoing percutaneous coronary intervention, Pharmacology 91(3-4): 165-172, 2013
  • 27. Siller-Matula JM, Trenk D, Schror K, Gawaz M, Kristensen SD, Storey RF et al., Response variability to P2Y12 receptor inhibitors: expectations and reality. JACC Cardiovasc Interv, 2013
  • 28. Zhuo ZL, Xian HP, Long Y, Liu C, Sun YY, Ma YT, et al., Association between cyp2c19 and abcb1 polymorphisms and clopidogrel resistance in clopidogrel-treated chinese patients, Anatolian Journal of Cardiology 19(2): 123–129, 2018
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Gizem Köprülülü Küçük

Publication Date December 30, 2022
Acceptance Date December 23, 2022
Published in Issue Year 2022

Cite

APA Köprülülü Küçük, G. (2022). Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods. Bulletin of Biotechnology, 3(2), 50-55. https://doi.org/10.51539/biotech.1182838
AMA Köprülülü Küçük G. Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods. Bull. Biotechnol. December 2022;3(2):50-55. doi:10.51539/biotech.1182838
Chicago Köprülülü Küçük, Gizem. “Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods”. Bulletin of Biotechnology 3, no. 2 (December 2022): 50-55. https://doi.org/10.51539/biotech.1182838.
EndNote Köprülülü Küçük G (December 1, 2022) Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods. Bulletin of Biotechnology 3 2 50–55.
IEEE G. Köprülülü Küçük, “Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods”, Bull. Biotechnol., vol. 3, no. 2, pp. 50–55, 2022, doi: 10.51539/biotech.1182838.
ISNAD Köprülülü Küçük, Gizem. “Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods”. Bulletin of Biotechnology 3/2 (December 2022), 50-55. https://doi.org/10.51539/biotech.1182838.
JAMA Köprülülü Küçük G. Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods. Bull. Biotechnol. 2022;3:50–55.
MLA Köprülülü Küçük, Gizem. “Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods”. Bulletin of Biotechnology, vol. 3, no. 2, 2022, pp. 50-55, doi:10.51539/biotech.1182838.
Vancouver Köprülülü Küçük G. Detection of The Effect of CYP2C19*4 Mutation on Clopidogrel Response by In Silico Methods. Bull. Biotechnol. 2022;3(2):50-5.