Research Article
BibTex RIS Cite

Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods

Year 2024, , 11 - 18, 30.06.2024
https://doi.org/10.51539/biotech.1423000

Abstract

Due to increases in the soil pollution related to agricultural areas, the interests on the wild edible greens have been increasing nowadays. Scolymus hispanicus (=Golden thistle) is a wild edible plant which is widely and naturally spread in Türkiye. An in silico-based bioinformatics approach has been proposed for the evaluation of bioactive peptides from this species. In silico digestion and also bioactive peptides of RubisCO from S.hispanicus were studied by using BIOPEP-UWM. Protparam and Clustal Omega were also used to determine physicochemical parameters and sequence similarity, respectively. The AE values related to angiotensin converting enzyme and dipeptidyl peptidase-IV were 0.0847 and 0.1059 after in silico pepsin digestion (pH>2), respectively. While the antioxidant property obtained after pepsin (pH>2) digestion was found to be 0.0127, the value of 0.042 was obtained for ficin on this parameter. BIOPEP-UWM also exhibit important properties related to the bioactivities of the peptides such as antioxidant, dipeptidyl peptidase-IV and angiotensin converting enzyme inhibitions. From the results, it could be said that S. hispanicus has very important bioactive peptides which could be evaluated in the production of functional foods. Moreover, isolated bioactive peptides and also secondary metabolites can also be utilized in pharmaceutical industry. Further in vitro and in vivo studies are strongly recommended on S. hispanicus.

Project Number

the manuscript has not been supported financially.

References

  • Abbasi S, Moslehishad M, Salami M. (2022) Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int J Biol Macromol 213, 602-609.
  • Agirbasli Z, Cavas L. (2017) In silico evaluation of bioactive peptides from the green algae Caulerpa. J Appl Phycol 29, 1635-1646.
  • Agyei, D., Bambarandage, E., & Udenigwe, C. C. (2019). The role of bioinformatics in the discovery of bioactive peptides.
  • Ahmad B. (2017) Extraction of phytochemicals from Scolymus hispanicus and determination of potential health effects (Doctoral dissertation, Izmir Institute of Technology (Turkey)).
  • Altiner DD, Sahan, Y. (2016) A functional food additive: Scolymus Hispanicus L. Flour. Int J Food Eng 2(2), 124-27.
  • Arámburo-Gálvez JG, Arvizu-Flores AA, Cárdenas-Torres FI, Cabrera-Chávez F, Ramírez-Torres GI, Flores-Mendoza LK, Gastelum-Acosta PE, Figueroa-Salcido OG, Ontiveros N. (2022) Prediction of ACE-I inhibitory peptides derived from chickpea (Cicer arietinum L.): in silico assessments using simulated enzymatic hydrolysis, molecular docking and ADMET evaluation. Foods 11(11), 1576.
  • Baxevanis, A. D., Bader, G. D., & Wishart, D. S. (Eds.). (2020). Bioinformatics. John Wiley & Sons.
  • Berdja S, Boudarene L, Smail L, Neggazi S, Boumaza S, Sahraoui A, Haffaf EM, Kacimi G, Aouichat Bouguerra S. (2021) Scolymus hispanicus (Golden Thistle) Ameliorates Hepatic Steatosis and Metabolic Syndrome by Reducing Lipid Accumulation, Oxidative Stress, and Inflammation in Rats under Hyperfatty Diet. Evid Based Complementary Altern Med 2021, 1-14.
  • Çavaş L, Bilgin Y, Yilmaz-Abeşka Y. (2020) Can bioactive peptides of Lagocephalus sceleratus be evaluated in the functional food industry?. Biotech Studies 29(2), 77-84.
  • Çavaş L, Bilgin Y. (2021) Bioactivities from novel toxins of Pterois volitans: A Bioinformatics approach. Gazi Univ J Sci 8(4), 411-423.
  • Çavas L, Yilmaz-Abeska Y. (2023) Identification of Novel Endochitinase Class I Based Allergens. Asthma Allergy Immunol 21(1).
  • Cheng S, Tu M, Liu H, Zhao G, Du M. (2019) Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 59(sup1), S81-S95.
  • Daliri EBM, Oh DH, Lee BH. (2017) Bioactive peptides. Foods 6(5), 32.
  • Dang, C., Okagu, O., Sun, X., & Udenigwe, C. C. (2022). Bioinformatics analysis of adhesin-binding potential and ADME/Tox profile of anti-Helicobacter pylori peptides derived from wheat germ proteins. Heliyon, 8(6).
  • Du Z, Comer J, Li Y. (2023). Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends Anal Chem 117051.
  • Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. (2022) Bioactive peptides: From basic research to clinical trials and commercialization. J Agric Food Chem 70(12), 3585-3595.
  • Fan X, Bai L, Zhu L, Yang L, Zhang X. (2014) Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62(38), 9211-9222.
  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook, 571-607. Humana press.
  • Garmidolova, A., Desseva, I., Mihaylova, D., Lante, A. (2022). Bioactive peptides from lupinus spp. seed proteins-state-of-the-art and perspectives. Appl Sci 12(8), 3766.
  • Gu Y, Li X, Qi X, Ma Y, Chan ECY. (2023) In silico identification of novel ACE and DPP-IV inhibitory peptides derived from buffalo milk proteins and evaluation of their inhibitory mechanisms. Amino Acids 55(2), 161-171.
  • Guarrera PM, Savo V. (2016) Wild food plants used in traditional vegetable mixtures in Italy. J Ethnopharmacol 185, 202-234.
  • Gomez HLR, Peralta JP, Tejano LA, Chang YW. (2019) In silico and in vitro assessment of portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides. Int J Mol Sci 20(20), 5191.
  • Iqbal N, Kumar P. (2023). From Data Science to Bioscience: Emerging era of bioinformatics applications, tools and challenges. Procedia Comp Sci 218, 1516-1528.
  • Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. (2022) In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins—a molecular docking study. J Food Biochem 46(11), e14137.
  • Iwaniak A, Minkiewicz P, Darewicz M, Protasiewicz M, Mogut D. (2015) Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J Funct Foods 16, 334-351.
  • Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. (2020) Characteristics of biopeptides released in silico from collagens using quantitative parameters. Foods, 9(7), 965.
  • Iwaniak A, Mogut D, Minkiewicz P, Żulewska J, Darewicz M. (2021) Gouda cheese with modified content of β-casein as a source of peptides with ACE-and DPP-IV-inhibiting bioactivity: A study based on in silico and in vitro protocol. Int J Mol Sci 22(6), 2949.
  • Kamer Coşkun N, Coşkun A, Ertas B, Ahmad S, Ümit Özdöl M, Çankaya S, Çetinkol Y, Ozel Y, Elçioğlu, HK. (2022). Dose-dependent effect of Scolymus hispanicus L.(sevketibostan) on ethylene glycol-induced kidney stone disease in rats. Indian J Biochem Biophys 59(1), 7-13.
  • Kandemir-Cavas C, Pérez-Sanchez H, Mert-Ozupek N, Cavas L. (2019). In silico analysis of bioactive peptides in invasive sea grass Halophila stipulacea. Cells, 8(6), 557.
  • Kandil ZA, Esmat A, El-Din RS, Ezzat SM. (2020) Anti-inflammatory activity of the lipophilic metabolites from Scolymus hispanicus L. S Afr J Bot 131, 43-50.
  • Karami Z, Akbari-Adergani B. (2019) Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J Food Sci Technol 56, 535-547.
  • Karik U. (2019) The effect of different harvest dates on the yield and quality of the golden thistle (Scolymus hispanicus L.). Turkish J Field Crop 24(2), 230-236.
  • Kartal C, Kaplan Türköz B, Otles S. (2020) Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. J Food Meas Charact 14(4), 1865-1883.
  • Leo EEM, Fernández JJA, Campos MRS. (2016) Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother 83, 816-826.
  • Lu Z, Sun N, Dong L, Gao Y, Lin S. (2022) Production of bioactive peptides from sea cucumber and its potential health benefits: A comprehensive review. J Agric Food Chem 70(25), 7607-7625.
  • Marmouzi I, El Karbane M, El Hamdani M, Kharbach M, Naceiri Mrabti H, Alami R, Dahraoui S, El Jemli M, Ouzzif Z, Cherrah Y, Derraji S, Faouzi, MEA. (2017) Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers. Nat Prod Res 31(22), 2669-2674.
  • Millan GCL, Veras FF, Stincone P, Pailliè-Jiménez ME, Brandelli A. (2022) Biological activities of whey protein hydrolysate produced by protease from the Antarctic bacterium Lysobacter sp. A03. Biocatal Agric Biotechnol 43, 102415.
  • Minkiewicz P, Iwaniak A, Darewicz M. (2019) BIOPEPUWM database of bioactive peptides: Current opportunities. Int J Mol Sci 20(23), 5978.
  • Morgat A, Lombardot T, Coudert E, Axelsen K, Neto TB, Gehant S, Bansal P, Bolleman J, Gasteiger E, de Castro E, Baratin D, Pozzato M, Xenarios I, Poux S, Redaschi N, Bridge A, The UniProt Consortium. (2019) Enzyme annotation in UniProtKB using Rhea. Bioinformatics 36(6), 1896-1901.
  • Nasri M. (2017) Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A review. Adv Food Nutr Res 81, 109-159.
  • Negi S.S, Schein CH, Braun W. (2023). The updated Structural Database of Allergenic Proteins (SDAP 2.0) provides 3D models for allergens and incorporated bioinformatics tools. J Allergy Clin Immunol Glob 2(4), 100162.
  • Nuñez SM, Guzmán F, Valencia P, Almonacid S, Cárdenas C. (2020). Collagen as a source of bioactive peptides: A bioinformatics approach. Electron J Biotechnol 48, 101-108.
  • Panjaitan FCA, Gomez HLR, Chang YW. (2018) In silico analysis of bioactive peptides released from giant grouper (Epinephelus lanceolatus) roe proteins identified by proteomics approach. Molecules 23(11), 2910.
  • Panjaitan FCA, Chen TY, Ku HH, Chang YW. (2022) In Silico and In Vitro Analyses of Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Protein Hydrolysates from Taiwan Mackerel (Scomber australasicus) Steaming Juice. Foods 11(12), 1785.
  • Paschoalinotto BH, Polyzos N, Compocholi M, Rouphael Y, Alexopoulos A, Dias MI, Barros L, Petropoulos SA. (2023) Domestication of Wild Edible Species: The Response of Scolymus hispanicus Plants to Different Fertigation Regimes. Horticulturae 9(1), 103.
  • Peredo-Lovillo A, Hernández-Mendoza A, Vallejo-Cordoba B, Romero-Luna HE. (2022). Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X, 13, 100183.
  • Polo S, Tardío J, Vélez-del-Burgo A, Molina M, Pardo-de-Santayana M. (2009) Knowledge, use and ecology of golden thistle (Scolymus hispanicus L.) in Central Spain. J Ethnobiol Ethnomedicine 5, 1-13.
  • Sarmadi BH, Ismail A. (2010) Antioxidative peptides from food proteins: A review. Peptides 31(10), 1949-1956.
  • Sergio L, Di Venere D, Gonnella M, D’Imperio M, Baruzzi F, Pinto L, Boari F, Cantore V, Candido V. (2023) Quality and Safety of Ready-to-Eat Golden Thistle (Scolymus hispanicus L.): A New Product for Traditional Italian Dishes. Plants 12(8), 1622.
  • Servi H. (2019) Essential oil composition from aerial parts of Scolymus hispanicus L. A J Health Sci 1(2), 87-94. Sievers F, Higgins DG. (2014) Clustal omega. Curr Protoc Bioinformatics 48(1), 3-13.
  • The UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47, 506-515
  • Tomić, A., Karačić, Z., & Tomić, S. (2023). Influence of Mutations of Conserved Arginines on Neuropeptide Binding in the DPP III Active Site. Mol 28(4), 1976.
  • Tu M, Cheng S, Lu W, Du M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends Anal Chem 105, 7-17.
  • Wen C, Zhang J, Zhang H, Duan Y, Ma H. (2020) Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci Technol 105, 308-322.
Year 2024, , 11 - 18, 30.06.2024
https://doi.org/10.51539/biotech.1423000

Abstract

Project Number

the manuscript has not been supported financially.

References

  • Abbasi S, Moslehishad M, Salami M. (2022) Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int J Biol Macromol 213, 602-609.
  • Agirbasli Z, Cavas L. (2017) In silico evaluation of bioactive peptides from the green algae Caulerpa. J Appl Phycol 29, 1635-1646.
  • Agyei, D., Bambarandage, E., & Udenigwe, C. C. (2019). The role of bioinformatics in the discovery of bioactive peptides.
  • Ahmad B. (2017) Extraction of phytochemicals from Scolymus hispanicus and determination of potential health effects (Doctoral dissertation, Izmir Institute of Technology (Turkey)).
  • Altiner DD, Sahan, Y. (2016) A functional food additive: Scolymus Hispanicus L. Flour. Int J Food Eng 2(2), 124-27.
  • Arámburo-Gálvez JG, Arvizu-Flores AA, Cárdenas-Torres FI, Cabrera-Chávez F, Ramírez-Torres GI, Flores-Mendoza LK, Gastelum-Acosta PE, Figueroa-Salcido OG, Ontiveros N. (2022) Prediction of ACE-I inhibitory peptides derived from chickpea (Cicer arietinum L.): in silico assessments using simulated enzymatic hydrolysis, molecular docking and ADMET evaluation. Foods 11(11), 1576.
  • Baxevanis, A. D., Bader, G. D., & Wishart, D. S. (Eds.). (2020). Bioinformatics. John Wiley & Sons.
  • Berdja S, Boudarene L, Smail L, Neggazi S, Boumaza S, Sahraoui A, Haffaf EM, Kacimi G, Aouichat Bouguerra S. (2021) Scolymus hispanicus (Golden Thistle) Ameliorates Hepatic Steatosis and Metabolic Syndrome by Reducing Lipid Accumulation, Oxidative Stress, and Inflammation in Rats under Hyperfatty Diet. Evid Based Complementary Altern Med 2021, 1-14.
  • Çavaş L, Bilgin Y, Yilmaz-Abeşka Y. (2020) Can bioactive peptides of Lagocephalus sceleratus be evaluated in the functional food industry?. Biotech Studies 29(2), 77-84.
  • Çavaş L, Bilgin Y. (2021) Bioactivities from novel toxins of Pterois volitans: A Bioinformatics approach. Gazi Univ J Sci 8(4), 411-423.
  • Çavas L, Yilmaz-Abeska Y. (2023) Identification of Novel Endochitinase Class I Based Allergens. Asthma Allergy Immunol 21(1).
  • Cheng S, Tu M, Liu H, Zhao G, Du M. (2019) Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 59(sup1), S81-S95.
  • Daliri EBM, Oh DH, Lee BH. (2017) Bioactive peptides. Foods 6(5), 32.
  • Dang, C., Okagu, O., Sun, X., & Udenigwe, C. C. (2022). Bioinformatics analysis of adhesin-binding potential and ADME/Tox profile of anti-Helicobacter pylori peptides derived from wheat germ proteins. Heliyon, 8(6).
  • Du Z, Comer J, Li Y. (2023). Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends Anal Chem 117051.
  • Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. (2022) Bioactive peptides: From basic research to clinical trials and commercialization. J Agric Food Chem 70(12), 3585-3595.
  • Fan X, Bai L, Zhu L, Yang L, Zhang X. (2014) Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62(38), 9211-9222.
  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook, 571-607. Humana press.
  • Garmidolova, A., Desseva, I., Mihaylova, D., Lante, A. (2022). Bioactive peptides from lupinus spp. seed proteins-state-of-the-art and perspectives. Appl Sci 12(8), 3766.
  • Gu Y, Li X, Qi X, Ma Y, Chan ECY. (2023) In silico identification of novel ACE and DPP-IV inhibitory peptides derived from buffalo milk proteins and evaluation of their inhibitory mechanisms. Amino Acids 55(2), 161-171.
  • Guarrera PM, Savo V. (2016) Wild food plants used in traditional vegetable mixtures in Italy. J Ethnopharmacol 185, 202-234.
  • Gomez HLR, Peralta JP, Tejano LA, Chang YW. (2019) In silico and in vitro assessment of portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides. Int J Mol Sci 20(20), 5191.
  • Iqbal N, Kumar P. (2023). From Data Science to Bioscience: Emerging era of bioinformatics applications, tools and challenges. Procedia Comp Sci 218, 1516-1528.
  • Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. (2022) In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins—a molecular docking study. J Food Biochem 46(11), e14137.
  • Iwaniak A, Minkiewicz P, Darewicz M, Protasiewicz M, Mogut D. (2015) Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J Funct Foods 16, 334-351.
  • Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. (2020) Characteristics of biopeptides released in silico from collagens using quantitative parameters. Foods, 9(7), 965.
  • Iwaniak A, Mogut D, Minkiewicz P, Żulewska J, Darewicz M. (2021) Gouda cheese with modified content of β-casein as a source of peptides with ACE-and DPP-IV-inhibiting bioactivity: A study based on in silico and in vitro protocol. Int J Mol Sci 22(6), 2949.
  • Kamer Coşkun N, Coşkun A, Ertas B, Ahmad S, Ümit Özdöl M, Çankaya S, Çetinkol Y, Ozel Y, Elçioğlu, HK. (2022). Dose-dependent effect of Scolymus hispanicus L.(sevketibostan) on ethylene glycol-induced kidney stone disease in rats. Indian J Biochem Biophys 59(1), 7-13.
  • Kandemir-Cavas C, Pérez-Sanchez H, Mert-Ozupek N, Cavas L. (2019). In silico analysis of bioactive peptides in invasive sea grass Halophila stipulacea. Cells, 8(6), 557.
  • Kandil ZA, Esmat A, El-Din RS, Ezzat SM. (2020) Anti-inflammatory activity of the lipophilic metabolites from Scolymus hispanicus L. S Afr J Bot 131, 43-50.
  • Karami Z, Akbari-Adergani B. (2019) Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J Food Sci Technol 56, 535-547.
  • Karik U. (2019) The effect of different harvest dates on the yield and quality of the golden thistle (Scolymus hispanicus L.). Turkish J Field Crop 24(2), 230-236.
  • Kartal C, Kaplan Türköz B, Otles S. (2020) Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. J Food Meas Charact 14(4), 1865-1883.
  • Leo EEM, Fernández JJA, Campos MRS. (2016) Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother 83, 816-826.
  • Lu Z, Sun N, Dong L, Gao Y, Lin S. (2022) Production of bioactive peptides from sea cucumber and its potential health benefits: A comprehensive review. J Agric Food Chem 70(25), 7607-7625.
  • Marmouzi I, El Karbane M, El Hamdani M, Kharbach M, Naceiri Mrabti H, Alami R, Dahraoui S, El Jemli M, Ouzzif Z, Cherrah Y, Derraji S, Faouzi, MEA. (2017) Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers. Nat Prod Res 31(22), 2669-2674.
  • Millan GCL, Veras FF, Stincone P, Pailliè-Jiménez ME, Brandelli A. (2022) Biological activities of whey protein hydrolysate produced by protease from the Antarctic bacterium Lysobacter sp. A03. Biocatal Agric Biotechnol 43, 102415.
  • Minkiewicz P, Iwaniak A, Darewicz M. (2019) BIOPEPUWM database of bioactive peptides: Current opportunities. Int J Mol Sci 20(23), 5978.
  • Morgat A, Lombardot T, Coudert E, Axelsen K, Neto TB, Gehant S, Bansal P, Bolleman J, Gasteiger E, de Castro E, Baratin D, Pozzato M, Xenarios I, Poux S, Redaschi N, Bridge A, The UniProt Consortium. (2019) Enzyme annotation in UniProtKB using Rhea. Bioinformatics 36(6), 1896-1901.
  • Nasri M. (2017) Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A review. Adv Food Nutr Res 81, 109-159.
  • Negi S.S, Schein CH, Braun W. (2023). The updated Structural Database of Allergenic Proteins (SDAP 2.0) provides 3D models for allergens and incorporated bioinformatics tools. J Allergy Clin Immunol Glob 2(4), 100162.
  • Nuñez SM, Guzmán F, Valencia P, Almonacid S, Cárdenas C. (2020). Collagen as a source of bioactive peptides: A bioinformatics approach. Electron J Biotechnol 48, 101-108.
  • Panjaitan FCA, Gomez HLR, Chang YW. (2018) In silico analysis of bioactive peptides released from giant grouper (Epinephelus lanceolatus) roe proteins identified by proteomics approach. Molecules 23(11), 2910.
  • Panjaitan FCA, Chen TY, Ku HH, Chang YW. (2022) In Silico and In Vitro Analyses of Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Protein Hydrolysates from Taiwan Mackerel (Scomber australasicus) Steaming Juice. Foods 11(12), 1785.
  • Paschoalinotto BH, Polyzos N, Compocholi M, Rouphael Y, Alexopoulos A, Dias MI, Barros L, Petropoulos SA. (2023) Domestication of Wild Edible Species: The Response of Scolymus hispanicus Plants to Different Fertigation Regimes. Horticulturae 9(1), 103.
  • Peredo-Lovillo A, Hernández-Mendoza A, Vallejo-Cordoba B, Romero-Luna HE. (2022). Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X, 13, 100183.
  • Polo S, Tardío J, Vélez-del-Burgo A, Molina M, Pardo-de-Santayana M. (2009) Knowledge, use and ecology of golden thistle (Scolymus hispanicus L.) in Central Spain. J Ethnobiol Ethnomedicine 5, 1-13.
  • Sarmadi BH, Ismail A. (2010) Antioxidative peptides from food proteins: A review. Peptides 31(10), 1949-1956.
  • Sergio L, Di Venere D, Gonnella M, D’Imperio M, Baruzzi F, Pinto L, Boari F, Cantore V, Candido V. (2023) Quality and Safety of Ready-to-Eat Golden Thistle (Scolymus hispanicus L.): A New Product for Traditional Italian Dishes. Plants 12(8), 1622.
  • Servi H. (2019) Essential oil composition from aerial parts of Scolymus hispanicus L. A J Health Sci 1(2), 87-94. Sievers F, Higgins DG. (2014) Clustal omega. Curr Protoc Bioinformatics 48(1), 3-13.
  • The UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47, 506-515
  • Tomić, A., Karačić, Z., & Tomić, S. (2023). Influence of Mutations of Conserved Arginines on Neuropeptide Binding in the DPP III Active Site. Mol 28(4), 1976.
  • Tu M, Cheng S, Lu W, Du M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends Anal Chem 105, 7-17.
  • Wen C, Zhang J, Zhang H, Duan Y, Ma H. (2020) Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci Technol 105, 308-322.
There are 54 citations in total.

Details

Primary Language English
Subjects Synthetic Biology, Food Biotechnology
Journal Section Research Articles
Authors

Levent Çavaş

Sema Dogmaz

Çağın Kandemir Çavaş

Project Number the manuscript has not been supported financially.
Publication Date June 30, 2024
Submission Date January 20, 2024
Acceptance Date April 2, 2024
Published in Issue Year 2024

Cite

APA Çavaş, L., Dogmaz, S., & Kandemir Çavaş, Ç. (2024). Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods. Bulletin of Biotechnology, 5(1), 11-18. https://doi.org/10.51539/biotech.1423000
AMA Çavaş L, Dogmaz S, Kandemir Çavaş Ç. Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods. Bull. Biotechnol. June 2024;5(1):11-18. doi:10.51539/biotech.1423000
Chicago Çavaş, Levent, Sema Dogmaz, and Çağın Kandemir Çavaş. “Investigation of Bioactive Peptides from Scolymus Hispanicus by Using in Silico Methods”. Bulletin of Biotechnology 5, no. 1 (June 2024): 11-18. https://doi.org/10.51539/biotech.1423000.
EndNote Çavaş L, Dogmaz S, Kandemir Çavaş Ç (June 1, 2024) Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods. Bulletin of Biotechnology 5 1 11–18.
IEEE L. Çavaş, S. Dogmaz, and Ç. Kandemir Çavaş, “Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods”, Bull. Biotechnol., vol. 5, no. 1, pp. 11–18, 2024, doi: 10.51539/biotech.1423000.
ISNAD Çavaş, Levent et al. “Investigation of Bioactive Peptides from Scolymus Hispanicus by Using in Silico Methods”. Bulletin of Biotechnology 5/1 (June 2024), 11-18. https://doi.org/10.51539/biotech.1423000.
JAMA Çavaş L, Dogmaz S, Kandemir Çavaş Ç. Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods. Bull. Biotechnol. 2024;5:11–18.
MLA Çavaş, Levent et al. “Investigation of Bioactive Peptides from Scolymus Hispanicus by Using in Silico Methods”. Bulletin of Biotechnology, vol. 5, no. 1, 2024, pp. 11-18, doi:10.51539/biotech.1423000.
Vancouver Çavaş L, Dogmaz S, Kandemir Çavaş Ç. Investigation of bioactive peptides from Scolymus hispanicus by using in silico methods. Bull. Biotechnol. 2024;5(1):11-8.