Research Article
BibTex RIS Cite

Effects of tetraconazole on antioxidant system in Lemna minor

Year 2024, Volume: 5 Issue: 2, 24 - 28, 31.12.2024
https://doi.org/10.51539/biotech.1551268

Abstract

Tetraconazole is a triazole fungicide widely used in agricultural fields and is potentially carcinogenic to humans. Previous studies have shown that this fungicide has toxic effects on plants and other non-target organisms. In this study, the impact of tetraconazole on the antioxidant system of duckweed (Lemna minor), a macrophyte plant, was evaluated. For this purpose, duckweed was exposed to tetraconazole at different doses (0.005, 0.01 and 0.02 ppm) for 7 days and the changes in photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were determined. In addition, changes in superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) enzyme activities and expression of genes encoding these enzymes were also measured. The results showed that tetraconazole exposure decreased photosynthetic pigment levels and increased MDA and H2O2 levels. In comparison to the control groups, the activities of SOD, CAT, POD and APX enzymes increased in a dose-dependent manner. Tetraconazole exposure also induced the mRNA expression levels of SOD, CAT and POD genes in L. minor in a dose-dependent manner. These results indicated that tetraconazole induced oxidative stress and activated the antioxidant system in duckweed.

References

  • Abbassy MA, Marzouk MA, Nasr HM, Mansy AS. (2014) Effect of imidacloprid and tetraconazole on various hematological and bio-chemical parameters in male albino rats (Rattus norvegious). Journal of Political Science and Public Affair 2(3):1-7.
  • Aebi H. (1984) Catalase in vitro. Methods Enzymol 105, 121–126.
  • Agarwal S, Pandey V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant 48:555-560.
  • Amer MM, Shehata MA, Lotfy HM, Monir HH. (2007). Determination of tetraconazole and diniconazole fungicide residues in tomatoes and green beans by capillary gas chromatography. Yakugaku Zasshi 127(6):993-999.
  • Castro-Sobrino L, Briz-Cid N, Figueiredo-González M, Sieiro-Sampedro T, González-Barreiro C, Cancho-Grande B, Rial-Otero R, Simal-Gándara J. (2019) Impact of fungicides mepanipyrim and tetraconazole on phenolic profile and colour of Mencía red wines. Food Control 98:412-423.
  • Cenkci S, Cigerci IH, Yildiz M, Ozay C, Bozdag A, Terzi H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Experiment Bot 67:467-473.
  • Li Y, Nie J, Chang W, Xu G, Farooq S, Liu M, Zhang J. (2020) Enantioselective behavior analysis of chiral fungicide tetraconazole in apples with UPLC-MS/MS. Food Control 116: 107-305.
  • Macar O. (2021) Multiple toxic effects of tetraconazole in Allium cepa L. meristematic cells. Environ Sci Pollut Res 28:10092- 10099.
  • Nakano Y, Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880.
  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H. (2012) Physiological effects of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147-2152.
  • Velikova V, Yordanov I, Edreva A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59-66.
  • Wang W. (1990) Literature review on duckweed toxicity testing. Environ Res 52:7-22.
  • Yee Y, Tam NFY, Wong YS, Lu CY. (2002) Growth and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environ Experiment Bot 1:13.
  • Zezulka S, Kummerová M, Babula P, Vánová L. (2013) Lemna minor exposed to fluoranthene: Growth, biochemical, physiological and histochemical changes. Aquatic Toxicol 140-141:37-47.
  • Zhang B, Li X, Chen D, Wang J. (2013) Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma 250:103-110.
  • Zhou WJ, Ye QF. (1996) Physiological and yield effects of uniconazole on winter rape (Brassica napus L.). J Plant Growth Regul 15:69-73.

  • Zhou WF, Shen HC, Xi HF, Ye QF. (1993) Studies on the regulation mechanism of paclobutrazol to the growth of rape plant. Acta Agric Univ Zhejiang 19:316-320.
Year 2024, Volume: 5 Issue: 2, 24 - 28, 31.12.2024
https://doi.org/10.51539/biotech.1551268

Abstract

References

  • Abbassy MA, Marzouk MA, Nasr HM, Mansy AS. (2014) Effect of imidacloprid and tetraconazole on various hematological and bio-chemical parameters in male albino rats (Rattus norvegious). Journal of Political Science and Public Affair 2(3):1-7.
  • Aebi H. (1984) Catalase in vitro. Methods Enzymol 105, 121–126.
  • Agarwal S, Pandey V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant 48:555-560.
  • Amer MM, Shehata MA, Lotfy HM, Monir HH. (2007). Determination of tetraconazole and diniconazole fungicide residues in tomatoes and green beans by capillary gas chromatography. Yakugaku Zasshi 127(6):993-999.
  • Castro-Sobrino L, Briz-Cid N, Figueiredo-González M, Sieiro-Sampedro T, González-Barreiro C, Cancho-Grande B, Rial-Otero R, Simal-Gándara J. (2019) Impact of fungicides mepanipyrim and tetraconazole on phenolic profile and colour of Mencía red wines. Food Control 98:412-423.
  • Cenkci S, Cigerci IH, Yildiz M, Ozay C, Bozdag A, Terzi H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Experiment Bot 67:467-473.
  • Li Y, Nie J, Chang W, Xu G, Farooq S, Liu M, Zhang J. (2020) Enantioselective behavior analysis of chiral fungicide tetraconazole in apples with UPLC-MS/MS. Food Control 116: 107-305.
  • Macar O. (2021) Multiple toxic effects of tetraconazole in Allium cepa L. meristematic cells. Environ Sci Pollut Res 28:10092- 10099.
  • Nakano Y, Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880.
  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H. (2012) Physiological effects of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147-2152.
  • Velikova V, Yordanov I, Edreva A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59-66.
  • Wang W. (1990) Literature review on duckweed toxicity testing. Environ Res 52:7-22.
  • Yee Y, Tam NFY, Wong YS, Lu CY. (2002) Growth and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environ Experiment Bot 1:13.
  • Zezulka S, Kummerová M, Babula P, Vánová L. (2013) Lemna minor exposed to fluoranthene: Growth, biochemical, physiological and histochemical changes. Aquatic Toxicol 140-141:37-47.
  • Zhang B, Li X, Chen D, Wang J. (2013) Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma 250:103-110.
  • Zhou WJ, Ye QF. (1996) Physiological and yield effects of uniconazole on winter rape (Brassica napus L.). J Plant Growth Regul 15:69-73.

  • Zhou WF, Shen HC, Xi HF, Ye QF. (1993) Studies on the regulation mechanism of paclobutrazol to the growth of rape plant. Acta Agric Univ Zhejiang 19:316-320.
There are 17 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Enzymes, Gene Expression
Journal Section Research Articles
Authors

Özkan Aksakal

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date September 16, 2024
Acceptance Date October 5, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Aksakal, Ö. (2024). Effects of tetraconazole on antioxidant system in Lemna minor. Bulletin of Biotechnology, 5(2), 24-28. https://doi.org/10.51539/biotech.1551268
AMA Aksakal Ö. Effects of tetraconazole on antioxidant system in Lemna minor. Bull. Biotechnol. December 2024;5(2):24-28. doi:10.51539/biotech.1551268
Chicago Aksakal, Özkan. “Effects of Tetraconazole on Antioxidant System in Lemna Minor”. Bulletin of Biotechnology 5, no. 2 (December 2024): 24-28. https://doi.org/10.51539/biotech.1551268.
EndNote Aksakal Ö (December 1, 2024) Effects of tetraconazole on antioxidant system in Lemna minor. Bulletin of Biotechnology 5 2 24–28.
IEEE Ö. Aksakal, “Effects of tetraconazole on antioxidant system in Lemna minor”, Bull. Biotechnol., vol. 5, no. 2, pp. 24–28, 2024, doi: 10.51539/biotech.1551268.
ISNAD Aksakal, Özkan. “Effects of Tetraconazole on Antioxidant System in Lemna Minor”. Bulletin of Biotechnology 5/2 (December 2024), 24-28. https://doi.org/10.51539/biotech.1551268.
JAMA Aksakal Ö. Effects of tetraconazole on antioxidant system in Lemna minor. Bull. Biotechnol. 2024;5:24–28.
MLA Aksakal, Özkan. “Effects of Tetraconazole on Antioxidant System in Lemna Minor”. Bulletin of Biotechnology, vol. 5, no. 2, 2024, pp. 24-28, doi:10.51539/biotech.1551268.
Vancouver Aksakal Ö. Effects of tetraconazole on antioxidant system in Lemna minor. Bull. Biotechnol. 2024;5(2):24-8.