Research Article
BibTex RIS Cite

Evaluation of the effects of immobilization on Spirulina platensis cultures

Year 2024, Volume: 5 Issue: 2, 29 - 33, 31.12.2024
https://doi.org/10.51539/biotech.1560848

Abstract

Different studies are carried out to reduce the production costs of Spirulina platensis biomass, which is produced in liquid cultures and has a high commercial value. These studies are in the direction of determining the optimum production method by changing the nutrient medium content and culture conditions. Immobilization is a method that changes the culture conditions. In our study, Luffa cylindrica (luffa), a natural fiber, was used for the immobilization of S. platensis cells, and the growth parameters and pigment production of the cultures were investigated. In two-factor experiments, week (first and second weeks) and culture type (free and immobilized cultures), statistically significant week*culture type interactions were found in optical density, dry weight, pH, and chlorophyll-a content. Immobilization did not increase the optical density and biomass production of the cultures. The highest optical densities and biomass productions were obtained in two-week-old free cultures, where the pH value was also found to be the highest. The highest values of chlorophyll-a and total carotene content were obtained from one-week immobilized cultures (30.06 µg/ml and 48.35 µg/ml, respectively). The fact that immobilization increased pigment production in one-week-old cultures indicates that when pigment production is targeted in S. platensis cultures, two-stage cultures that increase pigment yield via one-week immobilization after biomass production is completed can be used.

Ethical Statement

--

Supporting Institution

--

References

  • Abd El-Monem AM, Gharieb MM, Hussian AM, Doman KM (2018) Effect of pH on phytochemical and antibacterial activities of Spirulina platensis. Int J Appl Environ Sci 13(4):339–351
  • Azgın C, Işık O, Uslu L, Ak B (2015) A comparison the biomass of productivity, protein and lipid content of Spirulina platensis cultured in the pond and photobioreactor. J Biol Environ Sci 8(24):183–187.
  • Chen H-B, Wu J-Y, Wang C-F, Fu C-C, Shieh C-J, Chen C-I, Wang, C-Y, Liu Y-C (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53:52–56. doi: 10.1016/j.bej.2010.09.004
  • Chen Z, Osman AI, Rooney DW, Oh W-D, Yap P-S (2023) Remediation of Heavy Metals in Polluted Water by Immobilized Algae: Current Applications and Future Perspectives. Sustainability 15:5128. doi: 10.3390/su15065128
  • Danesi EDG, Rangel-Yagui CO, Sato S, de Carvalho JCM (2011) Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Braz Microbiol 42:362–373. doi: 10.1590/S1517-83822011000100046.
  • Dineshkumar R, Umamageswari P, Jayasingam P, Sampathkumar, P (2015) Enhance the growth of Spirulina platensis using molasses as organic additives. World J Pharm Res 4(6): 1057-1066.
  • Gabr GA, El-Sayed SM, Hikal MS (2020) Antioxidant activities of phycocyanin: a bioactive compound from Spirulina platensis. J Pharm Res Int 32(2): 73–85.
  • Ghali L, Msahli S, Zidi M, Sakli F (2009) Effect of pre-treatment of luffa fibres on the structural properties. Mater Lett 63(1): 61-63. doi: 10.9734/jpri/2020/v32i230407
  • Herklots GAC (1972) Vegetables in South-East Asia, Hafner Press, New York, pp. 326-333.
  • Jeffrey C (1990) An outline classification of the Cucurbitaceae. In: Bates, D.M., Robinson, R.W., Jeffrey, C. Biology and utilization of the Cucurbitaceae. Ithaca and London: Cornell University, pp. 449-463. doi: 10.7591/9781501745447-039
  • Miranda MS, Cintra RG, Barros SBM, Filho JM (1998) Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 31(8):1075–1079. doi: 10.1590/s0100-879x1998000800007
  • Nartop P, Akay Ş, Gürel A (2013) Immobilization of Rubia tinctorum L. suspension cultures and its effects on alizarin and purpurin accumulation and biomass production. Plant Cell Tiss Org Cult 112(1): 123-128. doi: 10.1007/s11240-012-0212-z
  • Nartop P, Kuşku E (2023) Influence of bio-AgNP on growth and biochemical composition of Spirulina platensis, Biol Bull 50: 363-372
  • Ogbonda KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Biores Technol, 98(11): 2207–2211. doi: 10.1016/j.biortech.2006.08.028
  • Pandey JP, Pathak N, Tiwari A (2010) Standardization of pH and light intensity for the biomass production of Spirulina platensis. J Alg Biomass Util 1(2):93–102.
  • Purev O, Park C, Kim H, Myung E, Choi N, Cho K (2023) Spirulina platensis immobilized alginate beads for removal of Pb(II) from aqueous solutions. Int J Environ Res Public Health 20:1106. doi: 10.3390/ijerph20021106
  • Romanenko EA, Kosakovskaya IV, Romanenko PA (2015) Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes, Pt I: Auxins, abscisic acid, ethylene. Int J Alg 17(3): 275–289. doi: 10.1615/InterJAlgae.v17.i3.80
  • Saefurahman G, Rahman AA, Hidayatuloh S, Farobie O, Abidin Z. (2021) Continuous extraction of Spirulina platensis biopigments using different extraction sequences, IOP Conf Ser Earth and Environ Sci 749:012005. doi: 10.1088/1755-1315/749/1/012005
  • Thirumala M (2012) Optimization of growth of Spirulina platensis LN1 for production of carotenoid. Inter J Life Sci Biotechnol Pharm Res 1: 152–157.
  • Venkataraman L (1997) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology, ed. Avigad Vonshak, J Appl Phycol 9:295–296. ISBN: 0-203-48396-0
Year 2024, Volume: 5 Issue: 2, 29 - 33, 31.12.2024
https://doi.org/10.51539/biotech.1560848

Abstract

References

  • Abd El-Monem AM, Gharieb MM, Hussian AM, Doman KM (2018) Effect of pH on phytochemical and antibacterial activities of Spirulina platensis. Int J Appl Environ Sci 13(4):339–351
  • Azgın C, Işık O, Uslu L, Ak B (2015) A comparison the biomass of productivity, protein and lipid content of Spirulina platensis cultured in the pond and photobioreactor. J Biol Environ Sci 8(24):183–187.
  • Chen H-B, Wu J-Y, Wang C-F, Fu C-C, Shieh C-J, Chen C-I, Wang, C-Y, Liu Y-C (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53:52–56. doi: 10.1016/j.bej.2010.09.004
  • Chen Z, Osman AI, Rooney DW, Oh W-D, Yap P-S (2023) Remediation of Heavy Metals in Polluted Water by Immobilized Algae: Current Applications and Future Perspectives. Sustainability 15:5128. doi: 10.3390/su15065128
  • Danesi EDG, Rangel-Yagui CO, Sato S, de Carvalho JCM (2011) Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Braz Microbiol 42:362–373. doi: 10.1590/S1517-83822011000100046.
  • Dineshkumar R, Umamageswari P, Jayasingam P, Sampathkumar, P (2015) Enhance the growth of Spirulina platensis using molasses as organic additives. World J Pharm Res 4(6): 1057-1066.
  • Gabr GA, El-Sayed SM, Hikal MS (2020) Antioxidant activities of phycocyanin: a bioactive compound from Spirulina platensis. J Pharm Res Int 32(2): 73–85.
  • Ghali L, Msahli S, Zidi M, Sakli F (2009) Effect of pre-treatment of luffa fibres on the structural properties. Mater Lett 63(1): 61-63. doi: 10.9734/jpri/2020/v32i230407
  • Herklots GAC (1972) Vegetables in South-East Asia, Hafner Press, New York, pp. 326-333.
  • Jeffrey C (1990) An outline classification of the Cucurbitaceae. In: Bates, D.M., Robinson, R.W., Jeffrey, C. Biology and utilization of the Cucurbitaceae. Ithaca and London: Cornell University, pp. 449-463. doi: 10.7591/9781501745447-039
  • Miranda MS, Cintra RG, Barros SBM, Filho JM (1998) Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 31(8):1075–1079. doi: 10.1590/s0100-879x1998000800007
  • Nartop P, Akay Ş, Gürel A (2013) Immobilization of Rubia tinctorum L. suspension cultures and its effects on alizarin and purpurin accumulation and biomass production. Plant Cell Tiss Org Cult 112(1): 123-128. doi: 10.1007/s11240-012-0212-z
  • Nartop P, Kuşku E (2023) Influence of bio-AgNP on growth and biochemical composition of Spirulina platensis, Biol Bull 50: 363-372
  • Ogbonda KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Biores Technol, 98(11): 2207–2211. doi: 10.1016/j.biortech.2006.08.028
  • Pandey JP, Pathak N, Tiwari A (2010) Standardization of pH and light intensity for the biomass production of Spirulina platensis. J Alg Biomass Util 1(2):93–102.
  • Purev O, Park C, Kim H, Myung E, Choi N, Cho K (2023) Spirulina platensis immobilized alginate beads for removal of Pb(II) from aqueous solutions. Int J Environ Res Public Health 20:1106. doi: 10.3390/ijerph20021106
  • Romanenko EA, Kosakovskaya IV, Romanenko PA (2015) Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes, Pt I: Auxins, abscisic acid, ethylene. Int J Alg 17(3): 275–289. doi: 10.1615/InterJAlgae.v17.i3.80
  • Saefurahman G, Rahman AA, Hidayatuloh S, Farobie O, Abidin Z. (2021) Continuous extraction of Spirulina platensis biopigments using different extraction sequences, IOP Conf Ser Earth and Environ Sci 749:012005. doi: 10.1088/1755-1315/749/1/012005
  • Thirumala M (2012) Optimization of growth of Spirulina platensis LN1 for production of carotenoid. Inter J Life Sci Biotechnol Pharm Res 1: 152–157.
  • Venkataraman L (1997) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology, ed. Avigad Vonshak, J Appl Phycol 9:295–296. ISBN: 0-203-48396-0
There are 20 citations in total.

Details

Primary Language English
Subjects Algology
Journal Section Research Articles
Authors

Pınar Nartop

Emine Kuşku 0000-0002-3256-0577

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date October 5, 2024
Acceptance Date November 16, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Nartop, P., & Kuşku, E. (2024). Evaluation of the effects of immobilization on Spirulina platensis cultures. Bulletin of Biotechnology, 5(2), 29-33. https://doi.org/10.51539/biotech.1560848
AMA Nartop P, Kuşku E. Evaluation of the effects of immobilization on Spirulina platensis cultures. Bull. Biotechnol. December 2024;5(2):29-33. doi:10.51539/biotech.1560848
Chicago Nartop, Pınar, and Emine Kuşku. “Evaluation of the Effects of Immobilization on Spirulina Platensis Cultures”. Bulletin of Biotechnology 5, no. 2 (December 2024): 29-33. https://doi.org/10.51539/biotech.1560848.
EndNote Nartop P, Kuşku E (December 1, 2024) Evaluation of the effects of immobilization on Spirulina platensis cultures. Bulletin of Biotechnology 5 2 29–33.
IEEE P. Nartop and E. Kuşku, “Evaluation of the effects of immobilization on Spirulina platensis cultures”, Bull. Biotechnol., vol. 5, no. 2, pp. 29–33, 2024, doi: 10.51539/biotech.1560848.
ISNAD Nartop, Pınar - Kuşku, Emine. “Evaluation of the Effects of Immobilization on Spirulina Platensis Cultures”. Bulletin of Biotechnology 5/2 (December 2024), 29-33. https://doi.org/10.51539/biotech.1560848.
JAMA Nartop P, Kuşku E. Evaluation of the effects of immobilization on Spirulina platensis cultures. Bull. Biotechnol. 2024;5:29–33.
MLA Nartop, Pınar and Emine Kuşku. “Evaluation of the Effects of Immobilization on Spirulina Platensis Cultures”. Bulletin of Biotechnology, vol. 5, no. 2, 2024, pp. 29-33, doi:10.51539/biotech.1560848.
Vancouver Nartop P, Kuşku E. Evaluation of the effects of immobilization on Spirulina platensis cultures. Bull. Biotechnol. 2024;5(2):29-33.