Review
BibTex RIS Cite

Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması

Year 2020, Volume: 1 Issue: 2, 87 - 98, 31.12.2020

Abstract

Seralarda yaz aylarında sera iç ortamında meydana gelen aşırı sıcaklık yükselmeleri bitki yetiştiriciliğini sınırlandırmaktadır. Bu dönemlerde uygulanan doğal havalandırma ve zorunlu havalandırma uygulamaları yetersiz olmaktadır. Ancak bu iç sıcaklık değerlerini düşürmek amacıyla kullanılan evaporatif serinletme yöntemleri havanın duyulur ısısını gizli ısıya dönüştürerek iç ortam sıcaklık değerlerini düşürmenin yanında ortamdaki bağıl nem değerlerini arttırarak yetiştiriciliğe imkan tanımaktadır. Bu evaporatif serinletme yöntemlerinden biride fan ped serinletme yöntemidir. Bu sistemde ticari olarak kullanılan selüloz esaslı ped malzemesinde iç ortam hava sıcaklığının, dış ortam havasının sıcaklığına göre 5-15 °C altına düşürülebileceğini ve sistem etkinliğini ise yaklaşık %80 olabileceği araştırmacılar tarafından belirlenmiştir. Ancak ped maliyetinin yüksek olması sistemin kullanılmasını sınırlandıran en büyük etmenlerden biridir. Bu amaçla kırsal bölgelerde atık olarak değerlendirilecek birçok yerel malzeme (kabak lifi, saman, çuval bezi, kavak talaşı, hindistan cevizi lifleri, odun talaşı, samar, japon şemsiyesi, topalak, kenevir, palash ağacı, pomza taşı, volkanik tüf) araştırmacılar tarafından denemeye alınarak bu malzemelerin ticari olarak kullanılan pedlere alternatif olarak düşük maliyet ile kullanılabileceği ve iç ortam hava sıcaklığının, dış ortam havasının sıcaklığına göre 3-13 °C altına düşürülebileceğini ve sistem etkinliğini yaklaşık %80 olarak hesap etmişlerdir. Yapılan çalışmada, ülkemizdeki örtü altı alan ve üretim miktarları, seralardaki serinletme ihtiyacı, yerel olarak kullanılabilecek malzemelerin verimlilikleri ve ped malzemesinde aranacak özellikler literatür verileri ile tartışılarak kullanım olanakları hakkında bilgiler sunulmuştur.

References

  • Abdel-Rahamn, G.M., 2006. Air temperature distribution along two greenhouses with different evaporative coolıng materials. Misr J. Ag. Eng., 23(2): 463- 475.
  • Ahmed, EM., Abaas, O., Ahmed, M., Ismail, MR., 2011. Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi Journal of Biological Sciences 18: 45–51.
  • Al-Amri, A., 2000. Comparative use of greenhouse covers materials and their effectiveness in evaporative cooling in eastern province of Saudi Arabia. Agricu. Mech. in Asia, Africa and Latin America, 31(2): 61-66.
  • Alodan, MA., Al-Faraj, AA., 2005. Design and evaluation of galvanized metal sheets as evaporative cooling pads. J. King Saud Univ, 18: Agric Sci 1: 9-18.
  • Arbel, A., Barak, M., Shklyar, A., 2003. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering, 84(1): 45-55.
  • Arbel, A., Yekutieli, O., Barak, M., 1999. Performance of a fog system for cooling greenhouses. Journal of Agricultural Engineering Research, (72): 129-136.
  • Atılgan, A., Öz, H., 2007. Serin iklime sahip bölgelerdeki seraların fan ped sistemiyle serinletilmesi. Batı Akdeniz Tarımsal Araştırma Enstitüsü Müdürlüğü, 24(1): 11-18.
  • Baille, A., 1999. Greenhouse structure and equipment for improving crop production in mild winter climates. Acta Horticulture, 491: 37-47.
  • Baytorun, A.N., Tokgöz, H., Üstün, S., Akyüz, A., 1994. Seralarda iklimlendirme olanakları. Adana, Türkiye. 3. Soğutma ve İklimlendirme Kongresi, Mayıs 1994, Çukurova Üniversitesi, 303-313s.
  • Baytorun, A.N., Üstün, S., Akyüz, A., Önder, D., 2017. Akdeniz iklim koşullarında seralarda havalandırma açıklık oranlarının belirlenmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 5(4): 409-415.
  • Boyacı, S., Akyuz, A., 2019. Determination of the suitability of some local materials as cooling pad in greenhouses. MKU. Tar. Bil. Derg. 24 (Özel Sayı) :257-268.
  • Boyacı, S., 2019. Fan-ped serinletme sisteminin duyulur ve gizli ısı transferine etkisi ve sistem etkinliğinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(1), 64-70.
  • Boyacı, S.,Akyüz, A., 2018. Effect of greenhouse cooling methods on the growth and yield of tomato in a Mediterranean climate. International journal of Horticulture, Agriculture and Food science (IJHAF) , 2(6): 199-207.
  • Cohen, Y., Stanhill, G., Fuchs, M., 1983. An experimental comparison of evaporative cooling in a naturally ventilated glasshouse due to wetting the outer roof and inner crop soil surfaces. Agricultural Meteorology, 28(3): 239-251.
  • Davies, P.A., 2005. A Solar cooling system for greenhouse food production in hot climates. Solar Energy, 79:661-668.
  • Dzivama, AU., Bindir, UB., Aboaba, FO., 1999. Evaluation of pad materials in construction of active evaporative cooler for stroge of fruits and vegetables in arid environments. Agricultural Mechanization in Asia, Africa and Latin America, AMA, 30(3): 51-55.
  • Elmsaad E, A. Omran, 2015. Evaluating the effect of new local materials of evaporative cooling pads. American-Eurasian J. Agric. & Environ. Sci., 15(1): 78-84.
  • Franco A, Valera DL, Peña A (2014) Energy efficiency in greenhouse evaporative cooling techniques: cooling boxes versus cellulose pads. Energies 7: 1427-1447.
  • Fuchs, M., Dayan, E., Presnov, E., 2006. Evaporative Cooling of a Ventilated Greenhouse Rose Crop Agricultural and Forest Meteorology, (138): 203–215.
  • Ganguly, A., Ghosh, S., 2011. A review of Ventilation and Cooling Technologies in Agricultural Greenhouse Application. Iranica J. Ener. Environ., 2(1): 32-46.
  • Gunhan, T., Demir, V., Yagcioglu, AK., 2007. Evaluation of the suitability of some local materials as cooling pads. Biosystems Engineering, 96 (3): 369-377.
  • Hanan, JJ., Holley, WL., Goldberry, KL., 1978. Greenhouse Management. Advances Series in Agricultural Sciences, Vol. 5. Springer-Verlag, Berlin.
  • Helmy, MA., Eltawil, MA., Abo-shieshaa, RR., El-Zan, NM., 2013. Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof. Agric Eng Int: CIGR Journal, 15(2):173-187.
  • Kittas, C., Bartzanas, T., Jaffrin, A., 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering, 85 (1): 87-94.
  • Kulkarni, MM., Vijaykumar, KN., Jadhav, NA., Bhor, MJ., Shinde, SS., 2015. Experimental performance evaluation of new cooling pad material for direct evaporating cooling for pune summer conditions. International Journal of Engineering Trends and Technology 22(6): 281-287.
  • Liao, CM., Chiu, KH., 2002. Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan Region. Building Environment, 37: 177-187.
  • Montero, J.I., Segal, I., 1993. Evaporative cooling of greenhouses by fogging combined with natural ventilation and shading. In: Proceedings of the International Workshop on Cooling Systems for Greenhouses Agritech, Tel Aviv, Israel. 2-6 May 1993.
  • Montero, J.I., Anton, A., Beil, C., Franquet, A., 1990. Cooling of greenhouses with compressed air fogging nozzles. Acta Hort., (281): 199–209.
  • Saltuk, B., 2019. Energy efficiency of greenhouse tomato production in Turkey: A case of Siirt province. Fresenius Environmental Bulletin, 28(8): 6352-6357.
  • Saltuk, B., Mikail, N., 2019. Prediction of indoor temperature in a greenhouse: Siirt sample. Fresenius Environmental Bulletin, 28(4): 3577-3585.
  • Sharma, A.K. and V.M. Salokhe, 2006. Greenhouse technology and application. First edition, Agrotech Publishing Academy: England.
  • Vala KV, Kumpavat MT, Nema A (2016) Comparative performance evaluation of evaporative cooling local pad materials with commercial pads. International Journal of Engineering Trends and Technology 39(4): 198-203.
  • Warke DA, Deshmukh SJ (2017) Experimental analysis of cellulose cooling pads used in evaporative coolers. International Journal of Energy Science and Engineering 3(4): 37-43.
  • Willits, D.H., 1999. Constraints and limitations in greenhouse cooling. challenges for the next decade. In: Proceedings of the ISHS International Symposium on Greenhouse Techniques Towards the Third Millenium, Haifa, Israel, September 5-8.
  • Zabeltitz C von. 2011. Integrated greenhouse systems for mild climates. Springer -Verlag Berlin Heidelberg.

Investigating the possibilities of using local materials as cooling pads in greenhouses

Year 2020, Volume: 1 Issue: 2, 87 - 98, 31.12.2020

Abstract

In the greenhouses, the excessive temperature increases that occur in the greenhouse indoor environment during the summer months limit the cultivation of plants. Natural ventilation and compulsory ventilation practices applied during these periods are insufficient. However, evaporative cooling methods used to reduce these internal temperature values allow cultivation by converting the sensible heat of the air into latent heat, reducing the indoor temperature values as well as increasing the relative humidity values in the environment. One of these evaporative cooling methods is the fan pad cooling method. In this system, it has been determined by the researchers that the indoor air temperature can be reduced below 5-15°C according to the temperature of the outdoor air in the cellulose-based pad material used commercially, and the system efficiency can be approximately 80%. However, the high cost of pads is one of the biggest factors limiting the use of the system. For this purpose, many local materials that will be considered as waste in rural areas (luffa, straw, sackcloth, aspen shavings, coconut fibers, wood shavings, samar, purdy, Nut-grass or Se’d, khus, palash tree fibers, pumice stone, volcanic tuff) are tried by researchers. They calculated that these materials can be used at low cost as an alternative to commercially used pads and that the indoor air temperature can be reduced to 3-13°C below the temperature of the outdoor air, and the system efficiency is approximately 80%. In the study, information about the greenhouse area and production amounts in our country, the need for cooling in the greenhouses, the efficiency of the materials that can be used locally and the features to be sought in the pad material are discussed with the literature data and information about the usage possibilities.

References

  • Abdel-Rahamn, G.M., 2006. Air temperature distribution along two greenhouses with different evaporative coolıng materials. Misr J. Ag. Eng., 23(2): 463- 475.
  • Ahmed, EM., Abaas, O., Ahmed, M., Ismail, MR., 2011. Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi Journal of Biological Sciences 18: 45–51.
  • Al-Amri, A., 2000. Comparative use of greenhouse covers materials and their effectiveness in evaporative cooling in eastern province of Saudi Arabia. Agricu. Mech. in Asia, Africa and Latin America, 31(2): 61-66.
  • Alodan, MA., Al-Faraj, AA., 2005. Design and evaluation of galvanized metal sheets as evaporative cooling pads. J. King Saud Univ, 18: Agric Sci 1: 9-18.
  • Arbel, A., Barak, M., Shklyar, A., 2003. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering, 84(1): 45-55.
  • Arbel, A., Yekutieli, O., Barak, M., 1999. Performance of a fog system for cooling greenhouses. Journal of Agricultural Engineering Research, (72): 129-136.
  • Atılgan, A., Öz, H., 2007. Serin iklime sahip bölgelerdeki seraların fan ped sistemiyle serinletilmesi. Batı Akdeniz Tarımsal Araştırma Enstitüsü Müdürlüğü, 24(1): 11-18.
  • Baille, A., 1999. Greenhouse structure and equipment for improving crop production in mild winter climates. Acta Horticulture, 491: 37-47.
  • Baytorun, A.N., Tokgöz, H., Üstün, S., Akyüz, A., 1994. Seralarda iklimlendirme olanakları. Adana, Türkiye. 3. Soğutma ve İklimlendirme Kongresi, Mayıs 1994, Çukurova Üniversitesi, 303-313s.
  • Baytorun, A.N., Üstün, S., Akyüz, A., Önder, D., 2017. Akdeniz iklim koşullarında seralarda havalandırma açıklık oranlarının belirlenmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 5(4): 409-415.
  • Boyacı, S., Akyuz, A., 2019. Determination of the suitability of some local materials as cooling pad in greenhouses. MKU. Tar. Bil. Derg. 24 (Özel Sayı) :257-268.
  • Boyacı, S., 2019. Fan-ped serinletme sisteminin duyulur ve gizli ısı transferine etkisi ve sistem etkinliğinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(1), 64-70.
  • Boyacı, S.,Akyüz, A., 2018. Effect of greenhouse cooling methods on the growth and yield of tomato in a Mediterranean climate. International journal of Horticulture, Agriculture and Food science (IJHAF) , 2(6): 199-207.
  • Cohen, Y., Stanhill, G., Fuchs, M., 1983. An experimental comparison of evaporative cooling in a naturally ventilated glasshouse due to wetting the outer roof and inner crop soil surfaces. Agricultural Meteorology, 28(3): 239-251.
  • Davies, P.A., 2005. A Solar cooling system for greenhouse food production in hot climates. Solar Energy, 79:661-668.
  • Dzivama, AU., Bindir, UB., Aboaba, FO., 1999. Evaluation of pad materials in construction of active evaporative cooler for stroge of fruits and vegetables in arid environments. Agricultural Mechanization in Asia, Africa and Latin America, AMA, 30(3): 51-55.
  • Elmsaad E, A. Omran, 2015. Evaluating the effect of new local materials of evaporative cooling pads. American-Eurasian J. Agric. & Environ. Sci., 15(1): 78-84.
  • Franco A, Valera DL, Peña A (2014) Energy efficiency in greenhouse evaporative cooling techniques: cooling boxes versus cellulose pads. Energies 7: 1427-1447.
  • Fuchs, M., Dayan, E., Presnov, E., 2006. Evaporative Cooling of a Ventilated Greenhouse Rose Crop Agricultural and Forest Meteorology, (138): 203–215.
  • Ganguly, A., Ghosh, S., 2011. A review of Ventilation and Cooling Technologies in Agricultural Greenhouse Application. Iranica J. Ener. Environ., 2(1): 32-46.
  • Gunhan, T., Demir, V., Yagcioglu, AK., 2007. Evaluation of the suitability of some local materials as cooling pads. Biosystems Engineering, 96 (3): 369-377.
  • Hanan, JJ., Holley, WL., Goldberry, KL., 1978. Greenhouse Management. Advances Series in Agricultural Sciences, Vol. 5. Springer-Verlag, Berlin.
  • Helmy, MA., Eltawil, MA., Abo-shieshaa, RR., El-Zan, NM., 2013. Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof. Agric Eng Int: CIGR Journal, 15(2):173-187.
  • Kittas, C., Bartzanas, T., Jaffrin, A., 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering, 85 (1): 87-94.
  • Kulkarni, MM., Vijaykumar, KN., Jadhav, NA., Bhor, MJ., Shinde, SS., 2015. Experimental performance evaluation of new cooling pad material for direct evaporating cooling for pune summer conditions. International Journal of Engineering Trends and Technology 22(6): 281-287.
  • Liao, CM., Chiu, KH., 2002. Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan Region. Building Environment, 37: 177-187.
  • Montero, J.I., Segal, I., 1993. Evaporative cooling of greenhouses by fogging combined with natural ventilation and shading. In: Proceedings of the International Workshop on Cooling Systems for Greenhouses Agritech, Tel Aviv, Israel. 2-6 May 1993.
  • Montero, J.I., Anton, A., Beil, C., Franquet, A., 1990. Cooling of greenhouses with compressed air fogging nozzles. Acta Hort., (281): 199–209.
  • Saltuk, B., 2019. Energy efficiency of greenhouse tomato production in Turkey: A case of Siirt province. Fresenius Environmental Bulletin, 28(8): 6352-6357.
  • Saltuk, B., Mikail, N., 2019. Prediction of indoor temperature in a greenhouse: Siirt sample. Fresenius Environmental Bulletin, 28(4): 3577-3585.
  • Sharma, A.K. and V.M. Salokhe, 2006. Greenhouse technology and application. First edition, Agrotech Publishing Academy: England.
  • Vala KV, Kumpavat MT, Nema A (2016) Comparative performance evaluation of evaporative cooling local pad materials with commercial pads. International Journal of Engineering Trends and Technology 39(4): 198-203.
  • Warke DA, Deshmukh SJ (2017) Experimental analysis of cellulose cooling pads used in evaporative coolers. International Journal of Energy Science and Engineering 3(4): 37-43.
  • Willits, D.H., 1999. Constraints and limitations in greenhouse cooling. challenges for the next decade. In: Proceedings of the ISHS International Symposium on Greenhouse Techniques Towards the Third Millenium, Haifa, Israel, September 5-8.
  • Zabeltitz C von. 2011. Integrated greenhouse systems for mild climates. Springer -Verlag Berlin Heidelberg.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Derleme Makaleler
Authors

Sedat Boyacı 0000-0001-9356-1736

Adil Akyüz 0000-0002-2120-0680

Merve Eren This is me 0000-0002-4221-6120

Publication Date December 31, 2020
Submission Date December 17, 2020
Acceptance Date December 31, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Boyacı, S., Akyüz, A., & Eren, M. (2020). Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması. Uluslararası Biyosistem Mühendisliği Dergisi, 1(2), 87-98.
AMA Boyacı S, Akyüz A, Eren M. Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması. UBSMD. December 2020;1(2):87-98.
Chicago Boyacı, Sedat, Adil Akyüz, and Merve Eren. “Seralarda soğutma Pedi Olarak Yerel Malzemelerin kullanımı olanaklarının araştırılması”. Uluslararası Biyosistem Mühendisliği Dergisi 1, no. 2 (December 2020): 87-98.
EndNote Boyacı S, Akyüz A, Eren M (December 1, 2020) Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması. Uluslararası Biyosistem Mühendisliği Dergisi 1 2 87–98.
IEEE S. Boyacı, A. Akyüz, and M. Eren, “Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması”, UBSMD, vol. 1, no. 2, pp. 87–98, 2020.
ISNAD Boyacı, Sedat et al. “Seralarda soğutma Pedi Olarak Yerel Malzemelerin kullanımı olanaklarının araştırılması”. Uluslararası Biyosistem Mühendisliği Dergisi 1/2 (December 2020), 87-98.
JAMA Boyacı S, Akyüz A, Eren M. Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması. UBSMD. 2020;1:87–98.
MLA Boyacı, Sedat et al. “Seralarda soğutma Pedi Olarak Yerel Malzemelerin kullanımı olanaklarının araştırılması”. Uluslararası Biyosistem Mühendisliği Dergisi, vol. 1, no. 2, 2020, pp. 87-98.
Vancouver Boyacı S, Akyüz A, Eren M. Seralarda soğutma pedi olarak yerel malzemelerin kullanımı olanaklarının araştırılması. UBSMD. 2020;1(2):87-98.