Research Article
BibTex RIS Cite

Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği

Year 2024, Volume: 3 Issue: 2, 125 - 135
https://doi.org/10.70700/bjea.1574806

Abstract

Uzay sondaları ve uzay araçları günümüz araştırmalarında en çok dikkat çeken konular arasındadır. Uzay sondalarının görev süresinin uzunluğu bu tükenmeyen dikkatin odağındadır. Bu akademik çalışma, Radyoizotop Termoelektrik Jeneratörlerin (RTG) uzay görevlerindeki kullanımını incelerken, bu teknolojinin getirdiği avantajları ve potansiyel riskleri ele alır. RTG'ler, güneş enerjisinin ulaşamadığı uzak uzay bölgelerinde güvenilir ve uzun ömürlü enerji sağlama yeteneği nedeniyle değerlidir. Ancak, radyoaktif maddelerle çalışmanın doğası gereği, bu teknoloji ciddi riskler taşır. Bunlar arasında radyoaktif yayılım, atık yönetimi, ısı transfer problemleri ve elektriksel arızalar bulunur. Makale, bu riskleri yönetmek için güçlendirilmiş kaplamalar, sıkı güvenlik protokolleri, düzenli bakım ve eğitim gibi çeşitli önlemlerin alınmasının önemini vurgular. Ayrıca, risk matrisi kullanılarak risklerin önceliklendirilmesi ve yönetim stratejilerinin belirlenmesi sağlanır. Bu stratejik yaklaşım, RTG teknolojisini daha güvenli ve etkili hale getirmeyi amaçlar.

References

  • A. C. Taner, “Radyoizotop Termoelektrik Jeneratör (Radioisotope Thermoelectric Generator – RTG) inovasyon teknolojili Plutonyum-238 atom yakıtlı robot uzay araçları”, Fizik Mühendisleri Odası Yayınları, 2011.
  • W. Wu, C. Wang, Y. Liu, L. Qin, W. Lin, S. Ye, H. Li, F. Shen, and Z. Zhang, “Frontier scientific questions in deep space exploration”, Chinese Science Bulletin, vol. 68, no. 6, pp. 606–627, 2023, doi: 10.1360/TB-2022-0667.
  • N. Cox et al., “EXPLORE- Innovative scientific data exploration and exploitation applications for (planetary) space sciences”, presented at the Europlanet Science Congress 2022, Granada, Spain, Sep. 2022, doi: 10.5194/epsc2022-507.
  • B. Shen, “Exploration methods in reinforcement learning”, in 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 2022, pp. 709–713, doi: 10.1109/AEECA55500.2022.9918998.
  • K. Kha, S. Whitley, and K. Fretz, “Cost and considerations for successful implementation of long duration space missions”, presented at the 2023 IEEE Aerospace Conference, 2023, doi: 10.1109/AERO55745.2023.10115892.
  • O. L. Ayodele, D. N. Luta, and M. T. Kahn, “A micro-nuclear power generator for space missions”, Energies, vol. 16, no. 4422, 2023, doi: 10.20944/preprints202304.1058.v1.
  • M. A. Hayder, H. B. Estrada, N. J. Lindsey, and M. Pecht, “Assessment of the calendar aging of lithium-ion batteries for long-term space missions”, Frontiers in Energy Research, 2023, doi: 10.3389/fenrg.2023.1108269.
  • L. Tailin, L. Youhong, Z.g Yingzeng, C. Haodong, X. Qingpei, Z. Jun, Z. Rende, L. Yi, and X. Yongchun., “Comprehensive modeling and characterization of Chang'E-4 radioisotope thermoelectric generator for lunar mission”, Applied Energy, vol. 336, 2023, doi: 10.1016/j.apenergy.2023.120865. National Aeronautics and Space Administration (NASA), “Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Fact Sheet”, 2013. [Online]. Available: https://www.nasa.gov/pdf/719139main_MMRTG_Factsheet.pdf.
  • R. C. O’Brien, R. M. Ambrosi, N. P. Bannister, S. D. Howe, and H. V. Atkinson, “Safe radioisotope thermoelectric generators and heat sources for space applications”, Journal of Nuclear Materials, vol. 377, no. 3, pp. 506–521, 2008, doi: 10.1016/j.jnucmat.2008.04.009.
  • F. Ritz, “Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Program Overview”, presented at the IEEE Aerospace Conference, 2004, doi: 10.1109/AERO.2004.1367632.
  • S. Sethumadhavan and D. Burger, “Powering a cat warmer using Bi2Te3 thin-film thermoelectric conversion of microprocessor waste heat”, presented at the ASPLOS, 2006.
  • D. M. Rowe, “Thermoelectrics, an environmentally friendly source of electrical power”, Renewable Energy, vol. 16, pp. 1251–1256, 1999, doi: 10.1016/S0960-1481(98)00512-6.
  • A. Misra, “Overview of NASA Program on Development of Radioisotope Power Systems with High Specific Power”, presented at the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2006, doi: 10.2514/6.2006-4187. O. Ersoz, “Radioisotope thermoelectric generator (RTG)”, Applied Physics Press, 2008.
  • B. Elahi, “Risk analysis techniques”, in Safety risk management for medical devices, 2nd ed., Elsevier, 2022, pp. 89–153, doi: 10.1016/b978-0-323-85755-0.00014-x.
  • S. Chelak, “Risk analysis and assessment”, Èkonomika i upravlenie: problemy, rešeniâ, 2024, doi: 10.36871/ek.up.p.r.2024.03.07.029.
  • C. Heggum, “Risk analysis and quantitative risk management”, in Encyclopedia of meat sciences, 3rd ed., Elsevier, 2024, pp. 540–550, doi: 10.1016/b978-0-323-85125-1.00067-3.
  • M. Shahrokhi, M. V. Sarashk, and A. Bernard, “Risk Analysis, a Fuzzy Analytic Approach”, in Risk Management, Sustainability and Leadership, IntechOpen, 2023, doi: 10.5772/intechopen.108535.
  • R. M. Ambrosi, H. Williams, E. J. Watkinson, A. Barco, R. Mesalam, T. Crawford, C. Bicknell, P. Samara-Ratna, D. Vernon, N. Bannister, D. Ross, J. Sykes, M. C. Perkinson, C. Burgess, C. Stroud, S. Gibson, A. Godfrey, R. G. Slater, M. J. Reece, K. Çen, K. Simpson, R. Tuley, M. Sarsfield, T. P. Tinsley, K. Stephenson, D. Freis, J. F. Vigier, R. JM Konings, C. Fongarland, M. Libessart, J. Merrifield, D. P. Kramer, J. Byrne and B. Foxcroft, “European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for Space Science and Exploration,” Space Science Reviews, vol. 215, no. 55, 2019, doi: 10.1007/s11214-019-0623-9.
  • R. D. Lorenz and E. S. Clarke, “Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment”, Planetary and Space Science, vol. 193, p. 105075, 2020.
  • J. S. Dustin and R. A. Borrelli, “Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator”, Nuclear Engineering and Design, vol. 385, p. 111475, 2021, doi: 10.1016/j.nucengdes.2021.111475.
  • O. Ersoz, “Radioisotope Thermoelectric Generator (RTG)”, MMRTG Fact Sheet Update, 2013.
  • T. C. Holgate, R. Bennett, T. Hammel, T. Caillat, S. Keyser and B. Sievers, “Increasing the efficiency of the multi-mission radioisotope thermoelectric generator”, Journal of Electronic Materials, vol. 44, no. 6, pp. 1814–1823, 2015, doi: 10.1007/s11664-014-3564-9.
  • R. Bechtel, “MMRTG Thermoelectric Couple”, Department of Energy, 2013.
  • H. Jing, Q. Xiang, R. Ze, X. Chen, J. Li, J. Liao and S. Bai, “A skutterudite thermoelectric module with high aspect ratio applied to milliwatt radioisotope thermoelectric generator”, Applied Energy, vol. 350, p. 121776, 2023, doi: 10.1016/j.apenergy.2023.121776.
  • Z. Yuan, X. Tang, Z. Xu, J. Li, W. Chen, K. Liu, Y. Liu and Z. Zhang., “Screen-printed radial structure micro radioisotope thermoelectric generator”, Applied Energy, vol. 225, pp. 746–754, 2018, doi: 10.1016/j.apenergy.2018.05.073.
  • C. S. R. Matthes, D. F. Woerner, T.J. Hendricks, J.-P. Fleurial, K. I. Oxnevad and C. D. Barklay, “Next-generation radioisotope thermoelectric generator study”, U.S. Government Work, 2024, doi: 10.1109/10.1000.
  • D. Palaporn, S. Tanusilp, Y. Sun, S. Pinitsoontorn, and K. Kurosaki, “Thermoelectric materials for space explorations”, Materials Advances, vol. 5, pp. 5351–5364, 2024.
  • Y. Liu, Y. Zhang, Q. Xiang, F. Hao, Q. An and H. Chen, “Comprehensive modeling and parametric analysis of Multi-Mission Radioisotope Thermoelectric Generator”, Applied Thermal Engineering, vol. 219, p. 119447, 2023, doi: 10.1016/j.applthermaleng.2022.119447.
  • Y. Liu, Y. Zhang, and X. Pei, “Performance analysis and optimization of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)”, Applied Thermal Engineering, vol. 219, p. 119447, 2023, doi: 10.1016/j.applthermaleng.2022.119447.
  • B. Johnson, “Power sources for space exploration”, Stanford University, 2024. [Online]. Available: http://large.stanford.edu/courses/2012/ph240/johnson1/.
  • S. Keranda, M. del M. P. G. Selakau, and N. P. Lindahitch, “A micro-nuclear power generator for space missions”, Energies, vol. 16, 2023, doi: 10.3390/en16114422.
  • S. Kesharwani, C. Kinney, and S. Vasu, “Numerical modelling of solid state combustion in novel pyrolants used as heat and energy sources for space missions”, presented at the AIAA SciTech Forum, 2023, doi: 10.2514/6.2023-3917.

Risk analysis of radioisotope thermoelectric generators (RTG): Energy security for space missions

Year 2024, Volume: 3 Issue: 2, 125 - 135
https://doi.org/10.70700/bjea.1574806

Abstract

Space probes and spacecraft are among the most important topics in today's research. The length of the mission of space probes is at the center of this unending attention. This academic study examines the use of Radioisotope Thermoelectric Generators (RTGs) in space missions, addressing the advantages and potential risks associated with this technology. RTGs are valued for their ability to provide reliable and long-lasting energy in remote regions of space where solar energy cannot reach. However, due to the nature of working with radioactive materials, this technology carries serious risks. These include radioactive emissions, waste management, heat transfer problems and electrical failures. The paper emphasizes the importance of taking various measures to manage these risks, such as reinforced coatings, strict safety protocols, regular maintenance and training. Furthermore, a risk matrix is used to prioritize risks and identify management strategies. This strategic approach aims to make RTG technology safer and more effective.

References

  • A. C. Taner, “Radyoizotop Termoelektrik Jeneratör (Radioisotope Thermoelectric Generator – RTG) inovasyon teknolojili Plutonyum-238 atom yakıtlı robot uzay araçları”, Fizik Mühendisleri Odası Yayınları, 2011.
  • W. Wu, C. Wang, Y. Liu, L. Qin, W. Lin, S. Ye, H. Li, F. Shen, and Z. Zhang, “Frontier scientific questions in deep space exploration”, Chinese Science Bulletin, vol. 68, no. 6, pp. 606–627, 2023, doi: 10.1360/TB-2022-0667.
  • N. Cox et al., “EXPLORE- Innovative scientific data exploration and exploitation applications for (planetary) space sciences”, presented at the Europlanet Science Congress 2022, Granada, Spain, Sep. 2022, doi: 10.5194/epsc2022-507.
  • B. Shen, “Exploration methods in reinforcement learning”, in 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 2022, pp. 709–713, doi: 10.1109/AEECA55500.2022.9918998.
  • K. Kha, S. Whitley, and K. Fretz, “Cost and considerations for successful implementation of long duration space missions”, presented at the 2023 IEEE Aerospace Conference, 2023, doi: 10.1109/AERO55745.2023.10115892.
  • O. L. Ayodele, D. N. Luta, and M. T. Kahn, “A micro-nuclear power generator for space missions”, Energies, vol. 16, no. 4422, 2023, doi: 10.20944/preprints202304.1058.v1.
  • M. A. Hayder, H. B. Estrada, N. J. Lindsey, and M. Pecht, “Assessment of the calendar aging of lithium-ion batteries for long-term space missions”, Frontiers in Energy Research, 2023, doi: 10.3389/fenrg.2023.1108269.
  • L. Tailin, L. Youhong, Z.g Yingzeng, C. Haodong, X. Qingpei, Z. Jun, Z. Rende, L. Yi, and X. Yongchun., “Comprehensive modeling and characterization of Chang'E-4 radioisotope thermoelectric generator for lunar mission”, Applied Energy, vol. 336, 2023, doi: 10.1016/j.apenergy.2023.120865. National Aeronautics and Space Administration (NASA), “Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Fact Sheet”, 2013. [Online]. Available: https://www.nasa.gov/pdf/719139main_MMRTG_Factsheet.pdf.
  • R. C. O’Brien, R. M. Ambrosi, N. P. Bannister, S. D. Howe, and H. V. Atkinson, “Safe radioisotope thermoelectric generators and heat sources for space applications”, Journal of Nuclear Materials, vol. 377, no. 3, pp. 506–521, 2008, doi: 10.1016/j.jnucmat.2008.04.009.
  • F. Ritz, “Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Program Overview”, presented at the IEEE Aerospace Conference, 2004, doi: 10.1109/AERO.2004.1367632.
  • S. Sethumadhavan and D. Burger, “Powering a cat warmer using Bi2Te3 thin-film thermoelectric conversion of microprocessor waste heat”, presented at the ASPLOS, 2006.
  • D. M. Rowe, “Thermoelectrics, an environmentally friendly source of electrical power”, Renewable Energy, vol. 16, pp. 1251–1256, 1999, doi: 10.1016/S0960-1481(98)00512-6.
  • A. Misra, “Overview of NASA Program on Development of Radioisotope Power Systems with High Specific Power”, presented at the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2006, doi: 10.2514/6.2006-4187. O. Ersoz, “Radioisotope thermoelectric generator (RTG)”, Applied Physics Press, 2008.
  • B. Elahi, “Risk analysis techniques”, in Safety risk management for medical devices, 2nd ed., Elsevier, 2022, pp. 89–153, doi: 10.1016/b978-0-323-85755-0.00014-x.
  • S. Chelak, “Risk analysis and assessment”, Èkonomika i upravlenie: problemy, rešeniâ, 2024, doi: 10.36871/ek.up.p.r.2024.03.07.029.
  • C. Heggum, “Risk analysis and quantitative risk management”, in Encyclopedia of meat sciences, 3rd ed., Elsevier, 2024, pp. 540–550, doi: 10.1016/b978-0-323-85125-1.00067-3.
  • M. Shahrokhi, M. V. Sarashk, and A. Bernard, “Risk Analysis, a Fuzzy Analytic Approach”, in Risk Management, Sustainability and Leadership, IntechOpen, 2023, doi: 10.5772/intechopen.108535.
  • R. M. Ambrosi, H. Williams, E. J. Watkinson, A. Barco, R. Mesalam, T. Crawford, C. Bicknell, P. Samara-Ratna, D. Vernon, N. Bannister, D. Ross, J. Sykes, M. C. Perkinson, C. Burgess, C. Stroud, S. Gibson, A. Godfrey, R. G. Slater, M. J. Reece, K. Çen, K. Simpson, R. Tuley, M. Sarsfield, T. P. Tinsley, K. Stephenson, D. Freis, J. F. Vigier, R. JM Konings, C. Fongarland, M. Libessart, J. Merrifield, D. P. Kramer, J. Byrne and B. Foxcroft, “European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for Space Science and Exploration,” Space Science Reviews, vol. 215, no. 55, 2019, doi: 10.1007/s11214-019-0623-9.
  • R. D. Lorenz and E. S. Clarke, “Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment”, Planetary and Space Science, vol. 193, p. 105075, 2020.
  • J. S. Dustin and R. A. Borrelli, “Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator”, Nuclear Engineering and Design, vol. 385, p. 111475, 2021, doi: 10.1016/j.nucengdes.2021.111475.
  • O. Ersoz, “Radioisotope Thermoelectric Generator (RTG)”, MMRTG Fact Sheet Update, 2013.
  • T. C. Holgate, R. Bennett, T. Hammel, T. Caillat, S. Keyser and B. Sievers, “Increasing the efficiency of the multi-mission radioisotope thermoelectric generator”, Journal of Electronic Materials, vol. 44, no. 6, pp. 1814–1823, 2015, doi: 10.1007/s11664-014-3564-9.
  • R. Bechtel, “MMRTG Thermoelectric Couple”, Department of Energy, 2013.
  • H. Jing, Q. Xiang, R. Ze, X. Chen, J. Li, J. Liao and S. Bai, “A skutterudite thermoelectric module with high aspect ratio applied to milliwatt radioisotope thermoelectric generator”, Applied Energy, vol. 350, p. 121776, 2023, doi: 10.1016/j.apenergy.2023.121776.
  • Z. Yuan, X. Tang, Z. Xu, J. Li, W. Chen, K. Liu, Y. Liu and Z. Zhang., “Screen-printed radial structure micro radioisotope thermoelectric generator”, Applied Energy, vol. 225, pp. 746–754, 2018, doi: 10.1016/j.apenergy.2018.05.073.
  • C. S. R. Matthes, D. F. Woerner, T.J. Hendricks, J.-P. Fleurial, K. I. Oxnevad and C. D. Barklay, “Next-generation radioisotope thermoelectric generator study”, U.S. Government Work, 2024, doi: 10.1109/10.1000.
  • D. Palaporn, S. Tanusilp, Y. Sun, S. Pinitsoontorn, and K. Kurosaki, “Thermoelectric materials for space explorations”, Materials Advances, vol. 5, pp. 5351–5364, 2024.
  • Y. Liu, Y. Zhang, Q. Xiang, F. Hao, Q. An and H. Chen, “Comprehensive modeling and parametric analysis of Multi-Mission Radioisotope Thermoelectric Generator”, Applied Thermal Engineering, vol. 219, p. 119447, 2023, doi: 10.1016/j.applthermaleng.2022.119447.
  • Y. Liu, Y. Zhang, and X. Pei, “Performance analysis and optimization of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)”, Applied Thermal Engineering, vol. 219, p. 119447, 2023, doi: 10.1016/j.applthermaleng.2022.119447.
  • B. Johnson, “Power sources for space exploration”, Stanford University, 2024. [Online]. Available: http://large.stanford.edu/courses/2012/ph240/johnson1/.
  • S. Keranda, M. del M. P. G. Selakau, and N. P. Lindahitch, “A micro-nuclear power generator for space missions”, Energies, vol. 16, 2023, doi: 10.3390/en16114422.
  • S. Kesharwani, C. Kinney, and S. Vasu, “Numerical modelling of solid state combustion in novel pyrolants used as heat and energy sources for space missions”, presented at the AIAA SciTech Forum, 2023, doi: 10.2514/6.2023-3917.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Air-Space Transportation, Aerospace Engineering (Other)
Journal Section Research Articles
Authors

Ozan Öztürk 0000-0002-4959-6808

Early Pub Date December 26, 2024
Publication Date
Submission Date October 28, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Öztürk, O. (2024). Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği. Bozok Journal of Engineering and Architecture, 3(2), 125-135. https://doi.org/10.70700/bjea.1574806
AMA Öztürk O. Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği. BJEA. December 2024;3(2):125-135. doi:10.70700/bjea.1574806
Chicago Öztürk, Ozan. “Radyoizotop Termoelektrik jeneratörlerin (RTG) Risk Analizi: Uzay görevleri için Enerji güvenliği”. Bozok Journal of Engineering and Architecture 3, no. 2 (December 2024): 125-35. https://doi.org/10.70700/bjea.1574806.
EndNote Öztürk O (December 1, 2024) Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği. Bozok Journal of Engineering and Architecture 3 2 125–135.
IEEE O. Öztürk, “Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği”, BJEA, vol. 3, no. 2, pp. 125–135, 2024, doi: 10.70700/bjea.1574806.
ISNAD Öztürk, Ozan. “Radyoizotop Termoelektrik jeneratörlerin (RTG) Risk Analizi: Uzay görevleri için Enerji güvenliği”. Bozok Journal of Engineering and Architecture 3/2 (December 2024), 125-135. https://doi.org/10.70700/bjea.1574806.
JAMA Öztürk O. Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği. BJEA. 2024;3:125–135.
MLA Öztürk, Ozan. “Radyoizotop Termoelektrik jeneratörlerin (RTG) Risk Analizi: Uzay görevleri için Enerji güvenliği”. Bozok Journal of Engineering and Architecture, vol. 3, no. 2, 2024, pp. 125-3, doi:10.70700/bjea.1574806.
Vancouver Öztürk O. Radyoizotop termoelektrik jeneratörlerin (RTG) risk analizi: Uzay görevleri için enerji güvenliği. BJEA. 2024;3(2):125-3.