Theoretical Study on Binding Energy and Optical Properties of GaAs Cubic Quantum Dot under Pressure and Temperature
Year 2023,
Volume: 1 Issue: 2, 87 - 96, 30.11.2023
Muharrem Kırak
,
Sait Yılmaz
Abstract
In this study, the binding energy (E_B) and optical properties, absorption coefficient (AC) and refractive index change (RIC) of a GaAs cubic quantum dot are studied for different pressure and temperature values. Numerical calculations are done by using variational method. The results present that E_B, the linear and nonlinear optical properties are sensitively dependent on the pressure, temperature and quantum dot size. Also, the results indicate that it is possible to modulate the resonant peaks position and magnitude of the AC and RIC with pressure and temperature.
References
- C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films,” Nat. Nanotechnol., vol. 7, pp. 335–339, May 2012, doi: 10.1038/NNANO.2012.61.
- D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications,” Chem. Rev., vol. 110, pp. 389–452, 2010, doi: 10.1021/cr900137k.
- I. Moreels, G. Rainò, R. Gomes, Z. Hens, T. Stöferle, and R. F. Mahrt, “Nearly Temperature-Independent Treshold for Amplifed Spontaneous Emission in Colloidal CdSe/CdS Quantum Dot-in-Rods,” Adv. Mater., vol. 24, pp. 231–235, 2012, doi: 10.1002/adma.201202067.
- F. K. Boz, B. Nisanci, S. Aktas, and S. E. Okan, “Energy Levels of Gaas/Alxga1-Xas/Alas Spherical Quantum Dot with an Impurity,” Appl. Surf. Sci., vol. 387, pp. 76–81, Nov. 2016, doi: 10.1016/j.apsusc.2016.06.035.
- S. Akgül, M. Şahin, and K. Köksal, “A Detailed Investigation of the Electronic Properties of a Multi-Layer Spherical Quantum Dot with a Parabolic Confinement,” J. Lumin., vol. 132, pp. 1705–1713, Jul. 2012, doi: 10.1016/j.jlumin.2012.02.012.
- F. K. Boz, S. Aktas, A. Bilekkaya, and S.E. Okan, “The Multilayered Spherical Quantum Dot under a Magnetic Field,” Appl. Surf. Sci., vol. 256, pp. 3832–3836, Apr. 2010, doi: 10.1016/j.apsusc.2010.01.036.
- G. Rezaei, F. Fereidooni, and Z. Azadegan, “External Electric and Magnetic Field Effects on the Optical Absorption Coefficients And Refractive Index Changes of a Hydrogenic Impurity Confined in a Cylindrical Quantum Wire with Convex Bottom,” Physica B, vol. 418, pp. 20–25, Jun. 2013, doi: 10.1016/j.physb.2013.02.038.
- N. Arunachalam, A. J. Peter, and C. W. Lee, “Pressure Induced Optical Absorption and Refractive Index Changes of a Shallow Hydrogenic Impurity in a Quantum Wire,” Physica E, vol. 44, pp. 222–228, Oct. 2011, doi: 10.1016/j.physe.2011.08.019.
- B. Çakır, Ü. Atav, Y. Yakar, and A. Özmen, “Calculation of Zeeman Splitting and Zeeman Transition Energies of Spherical Quantum Dot in Uniform Magnetic Field,” Chem. Phys., vol. 475, pp. 61–68, Aug. 2016, doi: 10.1016/j.chemphys.2016.06.010.
- A. J. Peter, “The Effect of Hydrostatic Pressure on Binding Energy of Impurity States in Spherical Quantum Dots,” Physica E, vol. 28, pp. 225–229, Aug. 2005, doi: 10.1016/j.physe.2005.03.018.
- J. L. Zhu and X. Chem, “Spectrum and Binding of an Off-Center Donor in a Spherical Quantum Dot,” Phys. Rev. B, vol. 50, pp. 4497–4502, Aug. 1994, doi: 10.1103/PhysRevB.50.4497.
- S. A. Safwana, A. S. Asmaaa, N. El meshed, M. H. Hekmat, TH. M. El-Sherbini, and S. H. Allam, “Lateral Electric Field Effects on Quantum Size Confinement in Cylindrical Quantum Dot under Parabolic Potential,” Superlatt. Microstruct., vol. 47, pp. 606–614, May 2010, doi: 10.1016/j.spmi.2010.02.004.
- İ. Karabulut, M. E. Mora-Ramos, and C. A. Duque, “Nonlinear Optical Rectification and Optical Absorption in Gaas-Ga1-Xalxas Asymmetric Double Quantum Wells: Combined Effects of Applied Electric and Magnetic Fields and Hydrostatic Pressure,” J. Lumin., vol. 131, pp. 1502–1509, Jul. 2011, doi: 10.1016/j.jlumin.2011.03.044.
- M. Chandrasekhar and H. R. Chandrasekhar, “Optical Studies of Strained Pseudomorphic Semiconductor Heterostructures under External Pressure,” Philosophical Mag. B, vol. 70, pp. 369–380, Sep 2006, doi: 10.1080/01418639408240213.
- A. M. Elabsy, “Effect of Temperature on the Binding Energy of a Confined Impurity to a Spherical Semiconductor Quantum Dot,” Physica Scripta, vol. 59, pp. 328–330, Apr. 1999, doi: 10.1238/Physica.Regular.059a00328.
- P. G. Bolcatto and C. R. Proetto, “Shape and Dielectric Mismatch Effects in Semiconductor Quantum Dots,” Phys. Rev. B, vol. 59, pp. 12487–12498, 1999, doi: 10.1103/PhysRevB.59.12487.
- C. Dane, H. Akbas, N. Talip, and K. Kasapoglu, “Effect of Spatial Electric Field on the Sub-Band Energy in a Cubic Gaas/Alas Quantum Dot”, Physica E, vol. 39, pp. 95–98, Jul. 2007, doi: 10.1016/j.physe.2007.01.007.
- İ. Karabulut, S. Ünlü, and H. Şafak, “Calculation of the Changes in the Absorption and Refractive Index for Intersubband Optical Transitions in a Quantum Box,” Phys. Stat. Sol. (b), vol. 242, pp. 2902–2909, Nov. 2005, doi: 10.1002/pssb.200541093.
- S. Ünlü, İ. Karabulut, and H. Şafak, “Linear and Nonlinear Intersubband Optical Absorption Coefficients and Refractive Index Changes in a Quantum Box with Finite Confining Potential,” Physica E, vol. 33, pp. 319–324, Jul. 2006, doi: 10.1016/j.physe.2006.03.163.
- R. Khordad, G. Rezaei, B. Vaseghi, F. Taghizadeh, and H. A. Kenary, “Study of Optical Properties in a Cubic Quantum Dot,” Opt. Quant. Electron., vol. 42, pp. 587–600, Sep. 2011, doi: 10.1007/s11082-011-9481-8.
- R. Khordad, “Effect of Position-Dependent Effective Mass on Linear and Nonlinear Optical Properties of a Cubic Quantum Dot,” Physica B vol. 406, pp. 3911-3916, Oct. 2011, doi: 10.1016/j.physb.2011.07.022.
- M. Kirak and S. Yilmaz, “Impurity Position Effects on the Linear and Nonlinear Optical Properties of the Cubic Quantum Dot under an External Electric Field,” J. Phys. D: App. Phys., vol. 48, pp. 325301–325309, Aug. 2015, doi: 10.1088/0022-3727/48/32/325301.
- B. Welber, M. Cardona M, C. K. Kim, and S. Rodriquez, “Dependence of the Direct Energy Gap of Gaas on Hydrostatic Pressure,” Phys. Rev. B, vol. 12, pp. 5729–5738, Dec. 1975, doi: 10.1103/PhysRevB.12.5729.
- G. A. Samara, “Temperature and Pressure Dependences of the Dielectric Constants of Semiconductors,” Phys. Rev. B, vol. 27, pp. 3494–3505, Mar. 1983, doi: 10.1103/PhysRevB.27.3494.
- P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Berlin:Springer-Verlag, 2010.
- J. S. Blakemore, “Semiconducting and other Major Properties of Gallium Arsenide,” J. Appl. Phys., vol. 53, pp. R123–R181, Oct. 1982, doi: 10.1063/1.331665.
- D. E. Aspnes and A. A. Studna, “Schottky-Barrier Electroreflectance: Application to Gaas,” Phys. Rev. B, vol. 7, pp. 4605–4625, May 1973, doi: 10.1103/PhysRevB.7.4605.
- C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc., vol. 122, pp. 1133–1142, Aug. 1975, doi: 10.1149/1.2134410.
- D. J. Wolford and J. A. Bradley, “Pressure Dependence of Shallow Bound States in Gallium Arsenide,” Solid State Comm., vol. 53, pp. 1069–1076, Mar. 1985, doi: 10.1016/0038-1098(85)90882-8.
- S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material Parameters for Use in Research and Device Applications,” J. Appl. Phys., vol. 58, pp. R1–R29, Aug. 1985, doi: 10.1063/1.336070.
- L. Guanghui and G. Kangxian, “Excitonic Effects on Linear and Nonlinear Optical Absorption Coefficients and Refractive Index Changes in One-Dimensional Quantum Dots with Linear Potential,” Optik, vol. 126, pp. 3807–3811, Dec. 2007, doi: 10.1016/j.ijleo.2015.07.108.
- S. Liang S and W. Xie, “Effects of the Hydrostatic Pressure and Temperature on Optical Properties of a Hydrogenic Impurity in the Disc-Shaped Quantum Dot,” Physica B, vol. 406, pp. 2224–2230, May 2011, doi: 10.1016/j.physb.2011.03.035.
- L. Bouzaiene, H. Alamri, L. Sfaxi, and H. Maaref, “Simultaneous Effects of Hydrostatic Pressure, Temperature and Electric Field on Optical Absorption in Inas/Gaas Lens Shape Quantum Dot,” J. Alloys Comp., vol. 655, pp. 172–177, Jan. 2016, doi:10.1016/j.jallcom.2015.09.181.
- A. Ed-Dahmouny, A. Sali, N. Es-Sbai,R. Arraoui, and C. A. Duque, “The Impact of Hydrostatic Pressure and Temperature on the Binding Energy, Linear, Third-Order Nonlinear, and Total Optical Absorption Coefficients and Refractive Index Changes of a Hydrogenic Donor Impurity Confined in Gaas/Alxga1−Xas Double Quantum Dots,” Eur. Phys. J. Plus, vol. 137, pp.784–798, Jul. 2022, doi:10.1140/epjp/s13360-022-03002-0.
Year 2023,
Volume: 1 Issue: 2, 87 - 96, 30.11.2023
Muharrem Kırak
,
Sait Yılmaz
References
- C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films,” Nat. Nanotechnol., vol. 7, pp. 335–339, May 2012, doi: 10.1038/NNANO.2012.61.
- D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications,” Chem. Rev., vol. 110, pp. 389–452, 2010, doi: 10.1021/cr900137k.
- I. Moreels, G. Rainò, R. Gomes, Z. Hens, T. Stöferle, and R. F. Mahrt, “Nearly Temperature-Independent Treshold for Amplifed Spontaneous Emission in Colloidal CdSe/CdS Quantum Dot-in-Rods,” Adv. Mater., vol. 24, pp. 231–235, 2012, doi: 10.1002/adma.201202067.
- F. K. Boz, B. Nisanci, S. Aktas, and S. E. Okan, “Energy Levels of Gaas/Alxga1-Xas/Alas Spherical Quantum Dot with an Impurity,” Appl. Surf. Sci., vol. 387, pp. 76–81, Nov. 2016, doi: 10.1016/j.apsusc.2016.06.035.
- S. Akgül, M. Şahin, and K. Köksal, “A Detailed Investigation of the Electronic Properties of a Multi-Layer Spherical Quantum Dot with a Parabolic Confinement,” J. Lumin., vol. 132, pp. 1705–1713, Jul. 2012, doi: 10.1016/j.jlumin.2012.02.012.
- F. K. Boz, S. Aktas, A. Bilekkaya, and S.E. Okan, “The Multilayered Spherical Quantum Dot under a Magnetic Field,” Appl. Surf. Sci., vol. 256, pp. 3832–3836, Apr. 2010, doi: 10.1016/j.apsusc.2010.01.036.
- G. Rezaei, F. Fereidooni, and Z. Azadegan, “External Electric and Magnetic Field Effects on the Optical Absorption Coefficients And Refractive Index Changes of a Hydrogenic Impurity Confined in a Cylindrical Quantum Wire with Convex Bottom,” Physica B, vol. 418, pp. 20–25, Jun. 2013, doi: 10.1016/j.physb.2013.02.038.
- N. Arunachalam, A. J. Peter, and C. W. Lee, “Pressure Induced Optical Absorption and Refractive Index Changes of a Shallow Hydrogenic Impurity in a Quantum Wire,” Physica E, vol. 44, pp. 222–228, Oct. 2011, doi: 10.1016/j.physe.2011.08.019.
- B. Çakır, Ü. Atav, Y. Yakar, and A. Özmen, “Calculation of Zeeman Splitting and Zeeman Transition Energies of Spherical Quantum Dot in Uniform Magnetic Field,” Chem. Phys., vol. 475, pp. 61–68, Aug. 2016, doi: 10.1016/j.chemphys.2016.06.010.
- A. J. Peter, “The Effect of Hydrostatic Pressure on Binding Energy of Impurity States in Spherical Quantum Dots,” Physica E, vol. 28, pp. 225–229, Aug. 2005, doi: 10.1016/j.physe.2005.03.018.
- J. L. Zhu and X. Chem, “Spectrum and Binding of an Off-Center Donor in a Spherical Quantum Dot,” Phys. Rev. B, vol. 50, pp. 4497–4502, Aug. 1994, doi: 10.1103/PhysRevB.50.4497.
- S. A. Safwana, A. S. Asmaaa, N. El meshed, M. H. Hekmat, TH. M. El-Sherbini, and S. H. Allam, “Lateral Electric Field Effects on Quantum Size Confinement in Cylindrical Quantum Dot under Parabolic Potential,” Superlatt. Microstruct., vol. 47, pp. 606–614, May 2010, doi: 10.1016/j.spmi.2010.02.004.
- İ. Karabulut, M. E. Mora-Ramos, and C. A. Duque, “Nonlinear Optical Rectification and Optical Absorption in Gaas-Ga1-Xalxas Asymmetric Double Quantum Wells: Combined Effects of Applied Electric and Magnetic Fields and Hydrostatic Pressure,” J. Lumin., vol. 131, pp. 1502–1509, Jul. 2011, doi: 10.1016/j.jlumin.2011.03.044.
- M. Chandrasekhar and H. R. Chandrasekhar, “Optical Studies of Strained Pseudomorphic Semiconductor Heterostructures under External Pressure,” Philosophical Mag. B, vol. 70, pp. 369–380, Sep 2006, doi: 10.1080/01418639408240213.
- A. M. Elabsy, “Effect of Temperature on the Binding Energy of a Confined Impurity to a Spherical Semiconductor Quantum Dot,” Physica Scripta, vol. 59, pp. 328–330, Apr. 1999, doi: 10.1238/Physica.Regular.059a00328.
- P. G. Bolcatto and C. R. Proetto, “Shape and Dielectric Mismatch Effects in Semiconductor Quantum Dots,” Phys. Rev. B, vol. 59, pp. 12487–12498, 1999, doi: 10.1103/PhysRevB.59.12487.
- C. Dane, H. Akbas, N. Talip, and K. Kasapoglu, “Effect of Spatial Electric Field on the Sub-Band Energy in a Cubic Gaas/Alas Quantum Dot”, Physica E, vol. 39, pp. 95–98, Jul. 2007, doi: 10.1016/j.physe.2007.01.007.
- İ. Karabulut, S. Ünlü, and H. Şafak, “Calculation of the Changes in the Absorption and Refractive Index for Intersubband Optical Transitions in a Quantum Box,” Phys. Stat. Sol. (b), vol. 242, pp. 2902–2909, Nov. 2005, doi: 10.1002/pssb.200541093.
- S. Ünlü, İ. Karabulut, and H. Şafak, “Linear and Nonlinear Intersubband Optical Absorption Coefficients and Refractive Index Changes in a Quantum Box with Finite Confining Potential,” Physica E, vol. 33, pp. 319–324, Jul. 2006, doi: 10.1016/j.physe.2006.03.163.
- R. Khordad, G. Rezaei, B. Vaseghi, F. Taghizadeh, and H. A. Kenary, “Study of Optical Properties in a Cubic Quantum Dot,” Opt. Quant. Electron., vol. 42, pp. 587–600, Sep. 2011, doi: 10.1007/s11082-011-9481-8.
- R. Khordad, “Effect of Position-Dependent Effective Mass on Linear and Nonlinear Optical Properties of a Cubic Quantum Dot,” Physica B vol. 406, pp. 3911-3916, Oct. 2011, doi: 10.1016/j.physb.2011.07.022.
- M. Kirak and S. Yilmaz, “Impurity Position Effects on the Linear and Nonlinear Optical Properties of the Cubic Quantum Dot under an External Electric Field,” J. Phys. D: App. Phys., vol. 48, pp. 325301–325309, Aug. 2015, doi: 10.1088/0022-3727/48/32/325301.
- B. Welber, M. Cardona M, C. K. Kim, and S. Rodriquez, “Dependence of the Direct Energy Gap of Gaas on Hydrostatic Pressure,” Phys. Rev. B, vol. 12, pp. 5729–5738, Dec. 1975, doi: 10.1103/PhysRevB.12.5729.
- G. A. Samara, “Temperature and Pressure Dependences of the Dielectric Constants of Semiconductors,” Phys. Rev. B, vol. 27, pp. 3494–3505, Mar. 1983, doi: 10.1103/PhysRevB.27.3494.
- P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Berlin:Springer-Verlag, 2010.
- J. S. Blakemore, “Semiconducting and other Major Properties of Gallium Arsenide,” J. Appl. Phys., vol. 53, pp. R123–R181, Oct. 1982, doi: 10.1063/1.331665.
- D. E. Aspnes and A. A. Studna, “Schottky-Barrier Electroreflectance: Application to Gaas,” Phys. Rev. B, vol. 7, pp. 4605–4625, May 1973, doi: 10.1103/PhysRevB.7.4605.
- C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc., vol. 122, pp. 1133–1142, Aug. 1975, doi: 10.1149/1.2134410.
- D. J. Wolford and J. A. Bradley, “Pressure Dependence of Shallow Bound States in Gallium Arsenide,” Solid State Comm., vol. 53, pp. 1069–1076, Mar. 1985, doi: 10.1016/0038-1098(85)90882-8.
- S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material Parameters for Use in Research and Device Applications,” J. Appl. Phys., vol. 58, pp. R1–R29, Aug. 1985, doi: 10.1063/1.336070.
- L. Guanghui and G. Kangxian, “Excitonic Effects on Linear and Nonlinear Optical Absorption Coefficients and Refractive Index Changes in One-Dimensional Quantum Dots with Linear Potential,” Optik, vol. 126, pp. 3807–3811, Dec. 2007, doi: 10.1016/j.ijleo.2015.07.108.
- S. Liang S and W. Xie, “Effects of the Hydrostatic Pressure and Temperature on Optical Properties of a Hydrogenic Impurity in the Disc-Shaped Quantum Dot,” Physica B, vol. 406, pp. 2224–2230, May 2011, doi: 10.1016/j.physb.2011.03.035.
- L. Bouzaiene, H. Alamri, L. Sfaxi, and H. Maaref, “Simultaneous Effects of Hydrostatic Pressure, Temperature and Electric Field on Optical Absorption in Inas/Gaas Lens Shape Quantum Dot,” J. Alloys Comp., vol. 655, pp. 172–177, Jan. 2016, doi:10.1016/j.jallcom.2015.09.181.
- A. Ed-Dahmouny, A. Sali, N. Es-Sbai,R. Arraoui, and C. A. Duque, “The Impact of Hydrostatic Pressure and Temperature on the Binding Energy, Linear, Third-Order Nonlinear, and Total Optical Absorption Coefficients and Refractive Index Changes of a Hydrogenic Donor Impurity Confined in Gaas/Alxga1−Xas Double Quantum Dots,” Eur. Phys. J. Plus, vol. 137, pp.784–798, Jul. 2022, doi:10.1140/epjp/s13360-022-03002-0.