Research Article
BibTex RIS Cite

Dynamic behavior of the spin-1/2 Ising Model in an oscillating external magnetic field

Year 2025, Volume: 3 Issue: 1, 34 - 41, 29.05.2025
https://doi.org/10.70500/bjs.1681654

Abstract

The dynamic phase transition (DPT) temperatures and the dynamic phase diagrams are obtained for spin-1/2 Ising system under the presence of a time-dependent oscillating external magnetic field using the method that was purposed by Meijer and Edwards [ANNALS of PHYSICS, 54, 240 (1969)] within the framework of the Bethe or constant coupling theory. The time variation of magnetization is investigated to find the phases in the system. Thermal behavior of the average magnetization is studied to characterize the nature (continuous and discontinuous) of transitions and to obtain the dynamic phase transition temperatures. The DPT temperatures are found always a second-order; hence there can be no tricritical point separating lines of first- and second-order dynamic phase transitions. This result agrees with the dynamic Monte-Carlo (MC) simulations of a two-dimensional kinetic spin-1/2 Ising model in an oscillating external magnetic field.

References

  • Acharyya, M. (1999). Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance, Phys. Rev. E, 59, 218. Doi: 10.1103/PhysRevE.59.218.
  • Acharyya, M., & Chakrabarti, B.K. (1995). Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B, 52, 6550. Doi: 10.1103/PhysRevB.52.6550.
  • Chakrabarti, B.K., & Acharyya, M. (1999). Dynamic transitions and hysteresis, Rev. Mod. Phys., 71, 847. Doi: 10.1103/RevModPhys.71.847.
  • Fujiwara, N., Kobayashi, T., & Fujisaka, H. (2007). Dynamic phase transition in a rotating external field, Phys. Rev. E 75, 026202., Doi: 10.1103/PhysRevE.75.026202.
  • Gedik, N., Yang, D.S., Logvenov, G., Bozovic, I & Zewail, A.H. (2007). Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography, Science, 316 (5823), 425-429. Doi: 10.1126/science.1138834.
  • Glauber, R.J. (1963). Time-dependent statistics of the Ising model, J. Math. Phys., 4, 294-307, Doi: 10.1063/1.1703954.
  • Jang, H., Azhari, M., & Yu, U. (2024). Monte Carlo study for the thermodynamic and dynamic phase transitions in the spin-S Ising model on Sierpiński carpet, Journal of Stat. Mech., vol. 2024, pp. 013201, January 2024, doi: 10.1088/1742-5468/ad0a91.
  • Jiang, F.L., Shi, X.L., & Liu, P.S. (2023). Dynamic magnetic properties and phase diagrams of Fe4N system, Int. J. Mod. Phys. B, 37 (17), 2350166., Doi: 10.1142/S0217979223501667.
  • Jiang, Q., Yang, H.N., & Wang, G.C. (1995). Scaling and dynamics of low- frequency hysteresis loops in ultrathin Co films on a Cu (001) surface, Phys. Rev. B 52, 14911., Doi: 10.1103/PhysRevB.52.14911.
  • Kantar, E. (2017). Dynamic magnetic behaviors in the Ising-type nanowire with core-shell single-ion anisotropies under a time-dependent oscillating external magnetic field, Chin. J. Phys., 55(5), 1808-1820., Doi: 10.1016/j.cjph.2017.06.013.
  • Kanuga, K., & Çakmak, M. (2007). Dynamic phase diagram derived from large deformation non-linear mechano-optical behavior of polyethylene naphthalate nanocomposites, Polymer, 48(24), 7176-7192., Doi: 10.1016/j.polymer.2007.09.047.
  • Kleemann, W., Braun, T., Dec, J., & Petracic, O. (2005). Dynamic phase transitions in ferroic systems with pinned domain walls, Phase Trans., 78(9), 811-816. Doi: 10.1080/01411590500289120.
  • Korniss, G., Rikvold, P.A., & Novotny, M.A. (2002). Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field, Phys. Rev. E, 66, 056127. Doi: 10.1103/PhysRevE.66.056127.
  • Li, B., & Wang, W. (2024). Exploration of dynamic phase transition of 3D Ising model with a new long-range interaction by using the Monte Carlo method, Chin. J. Phys., 90, 15-30. Doi: 10.1016/j.cjph.2024.05.021.
  • Meijer, P.H.E., & Edwards, J.C. (1969). Dynamic behavior of a spin system with transverse coupling under the influence of an oscillating magnetic field, Annals of Physics, 54, 240. Doi: 10.1016/0003-4916(69)90152-3.
  • Samoilenko, Z.A., Okunev, V.D., Pushenko, E.I., Isaev, V.A., Gierlowski, P., Kolwas, K., & Lewandowski, S.J. (2003). Dynamic phase transition in amorphous YBaCuO films under Ar laser irradiation, Inorganic. Mat. 39-, 836-842., Doi:10.1023/A:1025025313382.
  • Temizer, Ü. & Demir, L. (2018). Dynamic magnetic features of the mixed Ising system on the bilayer square lattice, J. Supercond. Nov. Magn., 31, 889-903., Doi: 10.1007/s10948-017-4260-9.
  • Temizer, Ü. (2014) Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice, J. Magn. Magn. Mater. 372, 47-58., Doi: 10.1016/j.jmmm.2014.07.015.
  • Tome, T., & Oliveira, M.J. (1990). Dynamic phase transition in the kinetic ising model under a time-dependent oscillating field, Phys. Rev. A, 41, 4251. Doi: 10.1103/PhysRevA.41.4251.
  • Zimmer, F.M. (1993). Ising model in an oscillating magnetic field: Mean-field theory, Phys. Rev. E, 47, 3950, Doi: 10.1103/physreve.47.3950.

Salınımlı bir dış manyetik alan içinde spin-1/2 Ising modelinin dinamik davranışı

Year 2025, Volume: 3 Issue: 1, 34 - 41, 29.05.2025
https://doi.org/10.70500/bjs.1681654

Abstract

Dinamik faz geçiş (DPT) sıcaklıkları ve dinamik faz diyagramları, Meijer ve Edwards [ANNALS of PHYSICS, 54, 240 (1969)] tarafından Bethe veya sabit çiftlenim teorisi çerçevesinde amaçlanan yöntem kullanılarak, zaman bağımlı salınımlı dış manyetik alanın varlığında spin-1/2 Ising sistemi için elde edilir. Sistemdeki fazları bulmak için mıknatıslanmanın zamana göre değişimi incelenir. Ortalama mıknatıslanmanın termal davranışı, geçişlerin doğasını (sürekli ve süreksiz) karakterize etmek ve dinamik faz geçiş sıcaklıklarını elde etmek için incelenir. DPT sıcaklıkları her zaman ikinci dereceden bulunur; bu nedenle birinci ve ikinci dereceden dinamik faz geçişlerinin çizgilerini ayıran üçlü kritik nokta olamaz. Bu sonuç, salınımlı bir dış manyetik alanda iki boyutlu kinetik spin-1/2 Ising modelinin dinamik MC simülasyonlarıyla uyumludur.

References

  • Acharyya, M. (1999). Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance, Phys. Rev. E, 59, 218. Doi: 10.1103/PhysRevE.59.218.
  • Acharyya, M., & Chakrabarti, B.K. (1995). Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B, 52, 6550. Doi: 10.1103/PhysRevB.52.6550.
  • Chakrabarti, B.K., & Acharyya, M. (1999). Dynamic transitions and hysteresis, Rev. Mod. Phys., 71, 847. Doi: 10.1103/RevModPhys.71.847.
  • Fujiwara, N., Kobayashi, T., & Fujisaka, H. (2007). Dynamic phase transition in a rotating external field, Phys. Rev. E 75, 026202., Doi: 10.1103/PhysRevE.75.026202.
  • Gedik, N., Yang, D.S., Logvenov, G., Bozovic, I & Zewail, A.H. (2007). Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography, Science, 316 (5823), 425-429. Doi: 10.1126/science.1138834.
  • Glauber, R.J. (1963). Time-dependent statistics of the Ising model, J. Math. Phys., 4, 294-307, Doi: 10.1063/1.1703954.
  • Jang, H., Azhari, M., & Yu, U. (2024). Monte Carlo study for the thermodynamic and dynamic phase transitions in the spin-S Ising model on Sierpiński carpet, Journal of Stat. Mech., vol. 2024, pp. 013201, January 2024, doi: 10.1088/1742-5468/ad0a91.
  • Jiang, F.L., Shi, X.L., & Liu, P.S. (2023). Dynamic magnetic properties and phase diagrams of Fe4N system, Int. J. Mod. Phys. B, 37 (17), 2350166., Doi: 10.1142/S0217979223501667.
  • Jiang, Q., Yang, H.N., & Wang, G.C. (1995). Scaling and dynamics of low- frequency hysteresis loops in ultrathin Co films on a Cu (001) surface, Phys. Rev. B 52, 14911., Doi: 10.1103/PhysRevB.52.14911.
  • Kantar, E. (2017). Dynamic magnetic behaviors in the Ising-type nanowire with core-shell single-ion anisotropies under a time-dependent oscillating external magnetic field, Chin. J. Phys., 55(5), 1808-1820., Doi: 10.1016/j.cjph.2017.06.013.
  • Kanuga, K., & Çakmak, M. (2007). Dynamic phase diagram derived from large deformation non-linear mechano-optical behavior of polyethylene naphthalate nanocomposites, Polymer, 48(24), 7176-7192., Doi: 10.1016/j.polymer.2007.09.047.
  • Kleemann, W., Braun, T., Dec, J., & Petracic, O. (2005). Dynamic phase transitions in ferroic systems with pinned domain walls, Phase Trans., 78(9), 811-816. Doi: 10.1080/01411590500289120.
  • Korniss, G., Rikvold, P.A., & Novotny, M.A. (2002). Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field, Phys. Rev. E, 66, 056127. Doi: 10.1103/PhysRevE.66.056127.
  • Li, B., & Wang, W. (2024). Exploration of dynamic phase transition of 3D Ising model with a new long-range interaction by using the Monte Carlo method, Chin. J. Phys., 90, 15-30. Doi: 10.1016/j.cjph.2024.05.021.
  • Meijer, P.H.E., & Edwards, J.C. (1969). Dynamic behavior of a spin system with transverse coupling under the influence of an oscillating magnetic field, Annals of Physics, 54, 240. Doi: 10.1016/0003-4916(69)90152-3.
  • Samoilenko, Z.A., Okunev, V.D., Pushenko, E.I., Isaev, V.A., Gierlowski, P., Kolwas, K., & Lewandowski, S.J. (2003). Dynamic phase transition in amorphous YBaCuO films under Ar laser irradiation, Inorganic. Mat. 39-, 836-842., Doi:10.1023/A:1025025313382.
  • Temizer, Ü. & Demir, L. (2018). Dynamic magnetic features of the mixed Ising system on the bilayer square lattice, J. Supercond. Nov. Magn., 31, 889-903., Doi: 10.1007/s10948-017-4260-9.
  • Temizer, Ü. (2014) Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice, J. Magn. Magn. Mater. 372, 47-58., Doi: 10.1016/j.jmmm.2014.07.015.
  • Tome, T., & Oliveira, M.J. (1990). Dynamic phase transition in the kinetic ising model under a time-dependent oscillating field, Phys. Rev. A, 41, 4251. Doi: 10.1103/PhysRevA.41.4251.
  • Zimmer, F.M. (1993). Ising model in an oscillating magnetic field: Mean-field theory, Phys. Rev. E, 47, 3950, Doi: 10.1103/physreve.47.3950.
There are 20 citations in total.

Details

Primary Language English
Subjects General Physics
Journal Section Research Article
Authors

Ümüt Temizer 0009-0003-1637-2642

Publication Date May 29, 2025
Submission Date April 22, 2025
Acceptance Date May 20, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

IEEE Ü. Temizer, “Dynamic behavior of the spin-1/2 Ising Model in an oscillating external magnetic field”, BJS, vol. 3, no. 1, pp. 34–41, 2025, doi: 10.70500/bjs.1681654.