Research Article
BibTex RIS Cite

Exploring the Quantum Coherence in Heisenberg Spin Chains and KSEA Interaction

Year 2025, Volume: 3 Issue: 2, 89 - 104, 25.11.2025
https://doi.org/10.70500/bjs.1808730

Abstract

A general property of quantum coherence is its non-increasing behavior during any incoherent quantum operation, such as an incoherent quantum channel in a noisy environment. We address that thermal coherence can mitigate these losses by offering relative improvements for different quantum models considering the ferromagnetic and antiferromagnetic properties. It is possible to obtain the thermal coherence of density operators obtained by the actions of the Hamiltonians, even for higher temperatures and certain values of the other parameters compared to other models. By adjusting the parameters, it is maximized such that the state of the output is maximally coherent. These make it possible to create maximal coherence in realizing any quantum information task in a noisy environment.

References

  • Åberg, J. (2014). Catalytic coherence. Physical Review Letters, 113(15), 150402.
  • Anand, N., & Benjamin, C. (2015). Do quantum strategies always win? Quantum Inf. Process. 14(10), 4027-4038.
  • Bagan, E., Bergou, J. A., Cottrell, S. S., & Hillery, M. (2016). Relations between coherence and path information. Phys. Rev. Lett. 116(16), 160406.
  • Baumgratz, T., Cramer, M. & Plenio, M. B. (2014). Quantifying coherence. Phys. Rev. Lett. 113(14), 140401.
  • Bromley, T. R., Cianciaruso, M. & Adesso, G. (2015). Frozen quantum coherence. Phys. Rev. Lett. 114(21), 210401.
  • Burkard, G., Loss, D. & DiVincenzo, D. P. (1999). Coupled quantum dots as quantum gates. Phys. Rev. B, 59(3), 2070–2078.
  • Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. (1998). Experimental realization of a quantum algorithm. Nature, 393(6681), 143–146.
  • Demkowicz-Dobrzański, R., & Maccone, L. (2014). Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801.
  • Duran, D. (2020). Action in Hamiltonian Models Constructed by Yang-Baxter Equation: Entanglement and Measures of Correlation. Chinese Journal of Physics, 68, 426-435.
  • Duran, D. (2022). Dynamics of the quantum coherence under the concatenation of Yang-Baxter matrix. Quantum Inf. Process., 21(2), 50.
  • Duran, D., Türkmen, A., Çelebi, G. & Dernek, B. (2025). Dynamics in the Yang-Baxter systems: Thermal quantum coherence and quantum correlations. European Physical Journal Plus, 140(9), 926.
  • Dzyaloshinskii, I. (1958). A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids, 4(4), 241-255.
  • Eisert, J., Wilkens, M. & Lewenstein, M. (1999). Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077-3080.
  • Gangadharaiah, S., Sun, J., Starykh, O.A. (2008). Spin-orbit-mediated anisotropic spin interaction in interacting electron systems. Phys. Rev. Lett. 100, 156402.
  • Gershenfeld, N. A. & Chuang, I. L. (1997). Bulk spin-resonance quantum computation. Science, 275(5298), 350–356.
  • Giovannetti, V., Lloyd, S., & Maccone, L. (2004). Quantum-enhanced measurements: Beating the standard quantum limit. Science, 306(5700), 1330.
  • Giovannetti, V., Lloyd, S., & Maccone, L. (2011). Advances in quantum metrology. Nature Photonics, 5, 222–229.
  • Glauber, R. J. (1963). The quantum theory of optical coherence. Physical Review, 131(6), 2766.
  • Gour, G., Müller, M., Narasimhachar, V., Spekkens, R. & Yunger Halpern, N. (2015). The resource theory of informational nonequilibrium in thermodynamics. Physics Reports, 583, 1–58.
  • Harrow, A. W. & Montanaro, A. (2017). Quantum computational supremacy. Nature, 549(7671), 203–209.
  • Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. (2009). Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942.
  • Huelga, S. F., & Plenio, M. B. (2013). Vibrations, quanta and biology. Contemporary Physics, 54(4), 181–207.
  • Jha, P. K., Mrejen, M., Kim, J., Wu, C., Wang, Y., Rostovtsev, Y. V., & Zhang, X. (2016). Coherence-driven topological transition in quantum metamaterials. Phys. Rev. Lett., 116(16), 165502.
  • Kammerlander, P., & Anders, J. (2016). Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174.
  • Kane, B. E. (1998). A silicon-based nuclear spin quantum computer. Nature, 393(6681), 133–137.
  • Kaplan, T. A. (1983). Single-band Hubbard model with spin-orbit coupling. Z. Phys. B: Condens. Matter, 49(4), 313–317.
  • Korzekwa, K., Lostaglio, M., Oppenheim, J. & Jennings, D. (2016). The extraction of work from quantum coherence. New J. Phys. 18(2), 023045.
  • Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., & Nori, F. (2013). Quantum biology. Nat. Phys. 9(1), 10–18.
  • Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., & Nori, F. (2012). Witnessing quantum coherence: From solid-state to biological systems. Sci. Rep. 2, 885.
  • Lloyd, S. (2011). Quantum coherence in biological systems. Journal of Physics: Conference Series, 302(1), 012037.
  • Loss, D. & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Phys. Rev. A, 57(1), 120–126.
  • Lostaglio, M., Jennings, D., & Rudolph, T. (2015). Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature Communications, 6, 6383.
  • Lostaglio, M., Korzekwa, K., Jennings, D., & Rudolph, T. (2015). Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X, 5(2), 021001.
  • Ma, J., Yadin, B., Girolami, D., Vedral, V. & Gu, M. (2016). Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407.
  • Mandel, L., & Wolf, E. (1995). Optical coherence and quantum optics. Cambridge University Press. Meyer, D. (1999). Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055.
  • Meyer, D., & Wallach, N. (2002). Global entanglement in multiparticle systems. Journal of Mathematical Physics, 43(9), 4273.
  • Milivojević, M. (2018). Symmetric spin-orbit interaction in triple quantum dot and minimization of spin-orbit leakage in CNOT gate. J. Phys.: Condens. Matter 30, 085302.
  • Moriya, T. (1960a). New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4(5), 228–230.
  • Moriya, T. (1960b). Theory of magnetism of NiF₂. Physical Review, 117(3), 635–647.
  • Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G. (2016). Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. Phys. Rev. Lett. 116, 150502.
  • Narasimhachar, V., & Gour, G. (2015). Low-temperature thermodynamics with quantum coherence. Nature Communications, 6, 7689.
  • Nishiyama, M., Inada, Y. & Zheng, G. (2007). Spin triplet superconducting state due to broken inversion symmetry in Li₂Pt₃B. Phys. Rev. Lett. 98(4), 047002.
  • Plenio, M. B., & Huelga, S. F. (2008). Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10(11), 113019.
  • Plenio, M. B., & Virmani, S. (2007). An introduction to entanglement measures. Quantum Inf. Comput. 7(1–2), 1–51.
  • Radhakrishnan, C., Parthasarathy, M., Jambulingam, S. & Byrnes, T. (2016). Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116(15), 150504.
  • Radhakrishnan, C., Parthasarathy, M., Jambulingam, S. & Byrnes, T. (2017). Quantum coherence of the Heisenberg spin models with Dzyaloshinsky-Moriya interactions. Sci. Rep. 7(1), 1.
  • Rana, S., Parashar, P., & Lewenstein, M. (2016). Trace-distance measure of coherence. Phys. Rev. A, 93(1), 012110.
  • Sasaki, T., Yamamoto, Y. & Koashi, M. (2014). Practical quantum key distribution protocol without monitoring signal disturbance. Nature, 509(7501), 475.
  • Senthil, T., Marston, J. B. & Fisher, M. P. A. (1999). Spin quantum Hall effect in unconventional superconductors. Phys. Rev. B, 60(6), 4245-4254.
  • Shekhtman, L., Aharony, A. & Entin-Wohlman, O. (1993). Bond-dependent symmetric and antisymmetric superexchange interactions in La₂CuO₄. Phys. Rev. B, 47(1), 174-182.
  • Shekhtman, L., Entin-Wohlman, O. & Aharony, A. (1992). Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69(5), 836-839.
  • Sørensen, A. & Mølmer, K. (1999). Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83(11), 2274-2277.
  • Streltsov, A., Adesso, G., & Plenio, M. B. (2017). Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003.
  • Streltsov, A., Singh, U., Dhar, H. S., Bera, M. N. & Adesso, G. (2015). Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403.
  • Sudarshan, E. C. G. (1963). Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277.
  • Trauzettel, B., Denis, V., Loss, D., Bulaev, D. & Burkard, G. (2007). Spin qubits in graphene quantum dots. Nat. Phys. 3(3), 192–196.
  • Türkmen, A., Çelebi, G., Dernek, B. & Duran, D. (2025). Quantum thermometry for the Hamiltonians constructed by quantum Yang-Baxter equation. Quantum Inf. Process. 24(1), 2.
  • Wei, S.-J., Xin, T. & Long, G.-L. (2018). Efficient universal quantum channel simulation in IBM’s cloud quantum computer. Sci. China Physics Mech. Astronomy, 61(7), 070311.
  • Winter, A., Yang, D. (2016) Operational Resource Theory of Coherence. Phys. Rev. Lett. 116,120404.
  • Xi, Z., Li, Y. & Fan, H. (2015). Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922.
  • Yao, Y., Xiao, X., Ge, L. & Sun, C. P. (2015). Quantum coherence in multipartite systems. Phys. Rev. A, 92(2), 022112.
  • Yildirim, T., Harris, A. B., Aharony, A. & Entin-Wohlman, O. (1995). Anisotropic spin Hamiltonians due to spin-orbit and Coulomb exchange interactions. Phys. Rev. B, 52(14), 10239-10267.
  • Yu, X.-D., Zhang, D.-J., Liu, C. L. & Tong, D. M. (2016). Measure-independent freezing of quantum coherence. Phys. Rev. A, 93(6), 060303.
  • Yurischev, M. A. (2020). On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions. Quantum Inf. Process. 19(9), 336.
  • Zhang, F.-G. & Li, Y. (2018). Quantum uncertainty relations of two generalized quantum relative entropies of coherence. Sci. China Physics Mech. Astronomy, 61(8), 080312.
  • Zhang, G. F. (2007). Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev. A, 75(3), 034304.
  • Zhao, M.-J., Ma, T. & Ma, Y.-Q. (2018). Coherence evolution in two-qubit system going through amplitude damping channel. Sci. China Physics Mech. Astronomy, 61(2), 020311.
  • Zhu, H., Hayashi, M. & Chen, L. (2018). Axiomatic and operational connections between the l1-norm of coherence and negativity. Phys. Rev. A 97, 022342.

Heisenberg Spin Zincirleri ve KSEA Etkileşiminde Kuantum Koherensliği Keşfetmek

Year 2025, Volume: 3 Issue: 2, 89 - 104, 25.11.2025
https://doi.org/10.70500/bjs.1808730

Abstract

Kuantum koherensliğin genel bir özelliği, gürültülü bir ortamdaki koherenssiz kuantum kanalı gibi herhangi bir koherenssiz kuantum işlemi sırasında artmayan davranışıdır. Termal koherensin, ferromanyetik ve antiferromanyetik özellikleri dikkate alarak farklı kuantum modelleri için göreceli iyileştirmeler sunarak bu kayıpları azaltabileceğini ele alıyoruz. Hamiltonianların etkileriyle elde edilen yoğunluk operatörlerinin termal koherensi, diğer modellere kıyasla daha yüksek sıcaklıklar ve diğer parametrelerin belirli değerleri için bile elde etmek mümkündür. Parametreleri ayarlayarak, çıkış durumunun maksimum koherensli olması için maksimize edilir. Bunlar, gürültülü bir ortamda herhangi bir kuantum bilgi görevini gerçekleştirirken maksimum koherens oluşturmayı mümkün kılar.

References

  • Åberg, J. (2014). Catalytic coherence. Physical Review Letters, 113(15), 150402.
  • Anand, N., & Benjamin, C. (2015). Do quantum strategies always win? Quantum Inf. Process. 14(10), 4027-4038.
  • Bagan, E., Bergou, J. A., Cottrell, S. S., & Hillery, M. (2016). Relations between coherence and path information. Phys. Rev. Lett. 116(16), 160406.
  • Baumgratz, T., Cramer, M. & Plenio, M. B. (2014). Quantifying coherence. Phys. Rev. Lett. 113(14), 140401.
  • Bromley, T. R., Cianciaruso, M. & Adesso, G. (2015). Frozen quantum coherence. Phys. Rev. Lett. 114(21), 210401.
  • Burkard, G., Loss, D. & DiVincenzo, D. P. (1999). Coupled quantum dots as quantum gates. Phys. Rev. B, 59(3), 2070–2078.
  • Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. (1998). Experimental realization of a quantum algorithm. Nature, 393(6681), 143–146.
  • Demkowicz-Dobrzański, R., & Maccone, L. (2014). Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801.
  • Duran, D. (2020). Action in Hamiltonian Models Constructed by Yang-Baxter Equation: Entanglement and Measures of Correlation. Chinese Journal of Physics, 68, 426-435.
  • Duran, D. (2022). Dynamics of the quantum coherence under the concatenation of Yang-Baxter matrix. Quantum Inf. Process., 21(2), 50.
  • Duran, D., Türkmen, A., Çelebi, G. & Dernek, B. (2025). Dynamics in the Yang-Baxter systems: Thermal quantum coherence and quantum correlations. European Physical Journal Plus, 140(9), 926.
  • Dzyaloshinskii, I. (1958). A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids, 4(4), 241-255.
  • Eisert, J., Wilkens, M. & Lewenstein, M. (1999). Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077-3080.
  • Gangadharaiah, S., Sun, J., Starykh, O.A. (2008). Spin-orbit-mediated anisotropic spin interaction in interacting electron systems. Phys. Rev. Lett. 100, 156402.
  • Gershenfeld, N. A. & Chuang, I. L. (1997). Bulk spin-resonance quantum computation. Science, 275(5298), 350–356.
  • Giovannetti, V., Lloyd, S., & Maccone, L. (2004). Quantum-enhanced measurements: Beating the standard quantum limit. Science, 306(5700), 1330.
  • Giovannetti, V., Lloyd, S., & Maccone, L. (2011). Advances in quantum metrology. Nature Photonics, 5, 222–229.
  • Glauber, R. J. (1963). The quantum theory of optical coherence. Physical Review, 131(6), 2766.
  • Gour, G., Müller, M., Narasimhachar, V., Spekkens, R. & Yunger Halpern, N. (2015). The resource theory of informational nonequilibrium in thermodynamics. Physics Reports, 583, 1–58.
  • Harrow, A. W. & Montanaro, A. (2017). Quantum computational supremacy. Nature, 549(7671), 203–209.
  • Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. (2009). Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942.
  • Huelga, S. F., & Plenio, M. B. (2013). Vibrations, quanta and biology. Contemporary Physics, 54(4), 181–207.
  • Jha, P. K., Mrejen, M., Kim, J., Wu, C., Wang, Y., Rostovtsev, Y. V., & Zhang, X. (2016). Coherence-driven topological transition in quantum metamaterials. Phys. Rev. Lett., 116(16), 165502.
  • Kammerlander, P., & Anders, J. (2016). Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174.
  • Kane, B. E. (1998). A silicon-based nuclear spin quantum computer. Nature, 393(6681), 133–137.
  • Kaplan, T. A. (1983). Single-band Hubbard model with spin-orbit coupling. Z. Phys. B: Condens. Matter, 49(4), 313–317.
  • Korzekwa, K., Lostaglio, M., Oppenheim, J. & Jennings, D. (2016). The extraction of work from quantum coherence. New J. Phys. 18(2), 023045.
  • Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., & Nori, F. (2013). Quantum biology. Nat. Phys. 9(1), 10–18.
  • Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., & Nori, F. (2012). Witnessing quantum coherence: From solid-state to biological systems. Sci. Rep. 2, 885.
  • Lloyd, S. (2011). Quantum coherence in biological systems. Journal of Physics: Conference Series, 302(1), 012037.
  • Loss, D. & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Phys. Rev. A, 57(1), 120–126.
  • Lostaglio, M., Jennings, D., & Rudolph, T. (2015). Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature Communications, 6, 6383.
  • Lostaglio, M., Korzekwa, K., Jennings, D., & Rudolph, T. (2015). Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X, 5(2), 021001.
  • Ma, J., Yadin, B., Girolami, D., Vedral, V. & Gu, M. (2016). Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407.
  • Mandel, L., & Wolf, E. (1995). Optical coherence and quantum optics. Cambridge University Press. Meyer, D. (1999). Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055.
  • Meyer, D., & Wallach, N. (2002). Global entanglement in multiparticle systems. Journal of Mathematical Physics, 43(9), 4273.
  • Milivojević, M. (2018). Symmetric spin-orbit interaction in triple quantum dot and minimization of spin-orbit leakage in CNOT gate. J. Phys.: Condens. Matter 30, 085302.
  • Moriya, T. (1960a). New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4(5), 228–230.
  • Moriya, T. (1960b). Theory of magnetism of NiF₂. Physical Review, 117(3), 635–647.
  • Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G. (2016). Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. Phys. Rev. Lett. 116, 150502.
  • Narasimhachar, V., & Gour, G. (2015). Low-temperature thermodynamics with quantum coherence. Nature Communications, 6, 7689.
  • Nishiyama, M., Inada, Y. & Zheng, G. (2007). Spin triplet superconducting state due to broken inversion symmetry in Li₂Pt₃B. Phys. Rev. Lett. 98(4), 047002.
  • Plenio, M. B., & Huelga, S. F. (2008). Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10(11), 113019.
  • Plenio, M. B., & Virmani, S. (2007). An introduction to entanglement measures. Quantum Inf. Comput. 7(1–2), 1–51.
  • Radhakrishnan, C., Parthasarathy, M., Jambulingam, S. & Byrnes, T. (2016). Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116(15), 150504.
  • Radhakrishnan, C., Parthasarathy, M., Jambulingam, S. & Byrnes, T. (2017). Quantum coherence of the Heisenberg spin models with Dzyaloshinsky-Moriya interactions. Sci. Rep. 7(1), 1.
  • Rana, S., Parashar, P., & Lewenstein, M. (2016). Trace-distance measure of coherence. Phys. Rev. A, 93(1), 012110.
  • Sasaki, T., Yamamoto, Y. & Koashi, M. (2014). Practical quantum key distribution protocol without monitoring signal disturbance. Nature, 509(7501), 475.
  • Senthil, T., Marston, J. B. & Fisher, M. P. A. (1999). Spin quantum Hall effect in unconventional superconductors. Phys. Rev. B, 60(6), 4245-4254.
  • Shekhtman, L., Aharony, A. & Entin-Wohlman, O. (1993). Bond-dependent symmetric and antisymmetric superexchange interactions in La₂CuO₄. Phys. Rev. B, 47(1), 174-182.
  • Shekhtman, L., Entin-Wohlman, O. & Aharony, A. (1992). Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69(5), 836-839.
  • Sørensen, A. & Mølmer, K. (1999). Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83(11), 2274-2277.
  • Streltsov, A., Adesso, G., & Plenio, M. B. (2017). Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003.
  • Streltsov, A., Singh, U., Dhar, H. S., Bera, M. N. & Adesso, G. (2015). Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403.
  • Sudarshan, E. C. G. (1963). Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277.
  • Trauzettel, B., Denis, V., Loss, D., Bulaev, D. & Burkard, G. (2007). Spin qubits in graphene quantum dots. Nat. Phys. 3(3), 192–196.
  • Türkmen, A., Çelebi, G., Dernek, B. & Duran, D. (2025). Quantum thermometry for the Hamiltonians constructed by quantum Yang-Baxter equation. Quantum Inf. Process. 24(1), 2.
  • Wei, S.-J., Xin, T. & Long, G.-L. (2018). Efficient universal quantum channel simulation in IBM’s cloud quantum computer. Sci. China Physics Mech. Astronomy, 61(7), 070311.
  • Winter, A., Yang, D. (2016) Operational Resource Theory of Coherence. Phys. Rev. Lett. 116,120404.
  • Xi, Z., Li, Y. & Fan, H. (2015). Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922.
  • Yao, Y., Xiao, X., Ge, L. & Sun, C. P. (2015). Quantum coherence in multipartite systems. Phys. Rev. A, 92(2), 022112.
  • Yildirim, T., Harris, A. B., Aharony, A. & Entin-Wohlman, O. (1995). Anisotropic spin Hamiltonians due to spin-orbit and Coulomb exchange interactions. Phys. Rev. B, 52(14), 10239-10267.
  • Yu, X.-D., Zhang, D.-J., Liu, C. L. & Tong, D. M. (2016). Measure-independent freezing of quantum coherence. Phys. Rev. A, 93(6), 060303.
  • Yurischev, M. A. (2020). On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions. Quantum Inf. Process. 19(9), 336.
  • Zhang, F.-G. & Li, Y. (2018). Quantum uncertainty relations of two generalized quantum relative entropies of coherence. Sci. China Physics Mech. Astronomy, 61(8), 080312.
  • Zhang, G. F. (2007). Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev. A, 75(3), 034304.
  • Zhao, M.-J., Ma, T. & Ma, Y.-Q. (2018). Coherence evolution in two-qubit system going through amplitude damping channel. Sci. China Physics Mech. Astronomy, 61(2), 020311.
  • Zhu, H., Hayashi, M. & Chen, L. (2018). Axiomatic and operational connections between the l1-norm of coherence and negativity. Phys. Rev. A 97, 022342.
There are 68 citations in total.

Details

Primary Language English
Subjects Quantum Information, Computation and Communication
Journal Section Research Article
Authors

Durgun Duran 0000-0002-9458-3715

Publication Date November 25, 2025
Submission Date October 22, 2025
Acceptance Date November 13, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

IEEE D. Duran, “Exploring the Quantum Coherence in Heisenberg Spin Chains and KSEA Interaction”, BJS, vol. 3, no. 2, pp. 89–104, 2025, doi: 10.70500/bjs.1808730.