1. Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N. The AO/
ASIF proximal femoral nail antirotation (PFNA): a new design for the
treatment of unstable proximal femoral fractures. Injury 2009;40:428-32.
2. Verheyden AP, Josten C. Intramedullary Fixation of Intertrochanteric
Fractures with the Proximal Femoral Nail (PFN). Operat Orthop Traumatol
2003;15:20-37.
3. Sener M, Onar V, Kazlmoğlu C, Yağdi S. [Mortality and morbidity in
elderly patients who underwent partial prosthesis replacement for proximal
femoral fractures]. Eklem Hastalik Cerrahisi 2009;20:11-7.
4. Curtis MJ, Jinnah RH, Wilson V, Cunningham BW. Proximal femoral
fractures: a biomechanical study to compare intramedullary and
extramedullary fixation. Injury 1994;25:99-104.
5. Kuzyk PR, Zdero R, Shah S, Olsen M, WaddellJP, Schemitsch EH. Femoral
head lag screw position for cephalomedullary nails: a biomechanical
analysis. J Orthop Trauma 2012;26:41-21.
6. Wu X, Yang M, Wu L, Niu W. A Biomechanical Comparison of Two
Intramedullary Implants for Subtrochanteric Fracture in Two Healing
Stages: A Finite Element Analysis. Appl Bionics Biomech 2015:1-7.
7. Oken OF, Soydan Z, Yildirim AO, Gulcek M, Ozlu K, Ucaner A.
Performance of modified anatomic plates is comparable to proximal
femoral nail, dynamic hip screw and anatomic plates: finite element and
biomechanical testing. Injury 2011;42:1077-83.
8. Azboy I, Demirtaş A, Gem M, Cakır IA, Tutak Y. A comparison of
proximal femoral locking plate versus 95-degree angled blade plate in the
treatment of reverse intertrochanteric fractures. Eklem Hastalik Cerrahisi
2014;25:15-20.
9. Hrubina M, Horák Z, Bartoška R, Navrátil L, Rosina J. Computational
modeling in the prediction of Dynamic Hip Screw failure in proximal
femoral fractures. J Appl Biomed 2013;11:143-51.
10. Goffin JM, Pankaj P, Simpson AH. The importance of lag screw position
for the stabilization of trochanteric fractures with a sliding hip screw: a
subject-specific finite element study. J Orthop Res 2013;31:596-600.
11. Kuzyk P, Higgins G, Zedero R, Shah S, Olsen M, Wadell J, et al. Femoral
head lag screw position for cephalomedullary nails: a biomechanical
analysis. J Orthop Trauma 2012;26:414-21.
12. Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PR.
Predictors of failure for cephalomedullary nailing of proximal femoral
fractures. Bone Joint J 2014;96:1029-34.
13. Baumgaertner MR, Solberg BD. Awareness of tip-apex distance reduces
failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br
1997;79:969-71.
14. Seral B, García JM, Cegoñino J, Doblaré M, Seral F. Finite element study
of intramedullary osteosynthesis in the treatment of trochanteric fractures
of the hip: Gamma and PFN. Injury 2004;35:130-5.
15. Mei J, Liu S, Jia G, Cui X, Jiang C, Ou Y. Finite element analysis of the
effect of cannulated screw placement and drilling frequency on femoral
neck fracture fixation. Injury 2014;45:2045-50.
16. Kilickap, E. and Huseyinoglu M. Optimization and modelling of burrheight
by using response surface methodology and genetic algorithm in drilling
AISI 316. J Eng Fac Eng Dicle Univ 2010;1:71-80.
17. Gundle R, Gargan MF, Simpson AH. How to minimize failures of fixation
of unstable intertrochanteric fractures. Injury 1995;26:611-4.
18. Kane P, Vopat B, Heard W, Thakur N, Paller D, Koruprolu S, et al. Is tip
apex distance as important as we think? A biomechanical study examining
optimal lag screw placement. Clin Orthop Relat Res 2014;472:2492-8.
19. Regling M, BlauA, Probe RA, Maxey JW, Solberg BD. Improved lag screw
positioning in the treatment of proximal femur fractures using a novel
computer assisted surgery method: a cadaveric study. BMC Musculoskelet
Disord 2014;15:189.
20. Munemoto M, Kido A, Sakamoto Y, Inoue K, Yokoi K, Shinohara Y, et
al. Analysis of trabecular bone microstructure in osteoporotic femoral
heads in human patients: in vivo study using multidetector row computed
tomography. BMC Musculoskelet Disord 2016;17:13.
21. Min BW, Lee KJ, Bae KC, Lee SW, Lee SJ, Choi JH. Result of Internal
Fixation for Stable Femoral Neck Fractures in Elderly Patients. Hip Pelvis
2016;28:43-8.
Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study
Year 2017,
Volume: 34 Issue: 5, 425 - 431, 01.09.2017
Background: Proximal femoral fracture rates are increasing due to osteoporosis and traffic accidents. Proximal femoral nails are routinely used in the treatment of these fractures in the proximal femur. Aims: To compare various combinations and to determine the ideal proximal lag screw position in pertrochanteric fractures (Arbeitsgemeinschaft für Osteosynthesefragen classification 31-A1) of the femur by using optimized finite element analysis. Study Design: Biomechanical study. Methods: Computed tomography images of patients" right femurs were processed with Mimics. Afterwards a solid femur model was created with SolidWorks 2015 and transferred to ANSYS Workbench 16.0 for response surface optimization analysis which was carried out according to anterior-posterior (-10°0) and posterior-anterior directions of the femur neck significantly increased these stresses. The most suitable position of the proximal lag screw was confirmed as the middle of the femoral neck by using optimized finite element analysis.
1. Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N. The AO/
ASIF proximal femoral nail antirotation (PFNA): a new design for the
treatment of unstable proximal femoral fractures. Injury 2009;40:428-32.
2. Verheyden AP, Josten C. Intramedullary Fixation of Intertrochanteric
Fractures with the Proximal Femoral Nail (PFN). Operat Orthop Traumatol
2003;15:20-37.
3. Sener M, Onar V, Kazlmoğlu C, Yağdi S. [Mortality and morbidity in
elderly patients who underwent partial prosthesis replacement for proximal
femoral fractures]. Eklem Hastalik Cerrahisi 2009;20:11-7.
4. Curtis MJ, Jinnah RH, Wilson V, Cunningham BW. Proximal femoral
fractures: a biomechanical study to compare intramedullary and
extramedullary fixation. Injury 1994;25:99-104.
5. Kuzyk PR, Zdero R, Shah S, Olsen M, WaddellJP, Schemitsch EH. Femoral
head lag screw position for cephalomedullary nails: a biomechanical
analysis. J Orthop Trauma 2012;26:41-21.
6. Wu X, Yang M, Wu L, Niu W. A Biomechanical Comparison of Two
Intramedullary Implants for Subtrochanteric Fracture in Two Healing
Stages: A Finite Element Analysis. Appl Bionics Biomech 2015:1-7.
7. Oken OF, Soydan Z, Yildirim AO, Gulcek M, Ozlu K, Ucaner A.
Performance of modified anatomic plates is comparable to proximal
femoral nail, dynamic hip screw and anatomic plates: finite element and
biomechanical testing. Injury 2011;42:1077-83.
8. Azboy I, Demirtaş A, Gem M, Cakır IA, Tutak Y. A comparison of
proximal femoral locking plate versus 95-degree angled blade plate in the
treatment of reverse intertrochanteric fractures. Eklem Hastalik Cerrahisi
2014;25:15-20.
9. Hrubina M, Horák Z, Bartoška R, Navrátil L, Rosina J. Computational
modeling in the prediction of Dynamic Hip Screw failure in proximal
femoral fractures. J Appl Biomed 2013;11:143-51.
10. Goffin JM, Pankaj P, Simpson AH. The importance of lag screw position
for the stabilization of trochanteric fractures with a sliding hip screw: a
subject-specific finite element study. J Orthop Res 2013;31:596-600.
11. Kuzyk P, Higgins G, Zedero R, Shah S, Olsen M, Wadell J, et al. Femoral
head lag screw position for cephalomedullary nails: a biomechanical
analysis. J Orthop Trauma 2012;26:414-21.
12. Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PR.
Predictors of failure for cephalomedullary nailing of proximal femoral
fractures. Bone Joint J 2014;96:1029-34.
13. Baumgaertner MR, Solberg BD. Awareness of tip-apex distance reduces
failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br
1997;79:969-71.
14. Seral B, García JM, Cegoñino J, Doblaré M, Seral F. Finite element study
of intramedullary osteosynthesis in the treatment of trochanteric fractures
of the hip: Gamma and PFN. Injury 2004;35:130-5.
15. Mei J, Liu S, Jia G, Cui X, Jiang C, Ou Y. Finite element analysis of the
effect of cannulated screw placement and drilling frequency on femoral
neck fracture fixation. Injury 2014;45:2045-50.
16. Kilickap, E. and Huseyinoglu M. Optimization and modelling of burrheight
by using response surface methodology and genetic algorithm in drilling
AISI 316. J Eng Fac Eng Dicle Univ 2010;1:71-80.
17. Gundle R, Gargan MF, Simpson AH. How to minimize failures of fixation
of unstable intertrochanteric fractures. Injury 1995;26:611-4.
18. Kane P, Vopat B, Heard W, Thakur N, Paller D, Koruprolu S, et al. Is tip
apex distance as important as we think? A biomechanical study examining
optimal lag screw placement. Clin Orthop Relat Res 2014;472:2492-8.
19. Regling M, BlauA, Probe RA, Maxey JW, Solberg BD. Improved lag screw
positioning in the treatment of proximal femur fractures using a novel
computer assisted surgery method: a cadaveric study. BMC Musculoskelet
Disord 2014;15:189.
20. Munemoto M, Kido A, Sakamoto Y, Inoue K, Yokoi K, Shinohara Y, et
al. Analysis of trabecular bone microstructure in osteoporotic femoral
heads in human patients: in vivo study using multidetector row computed
tomography. BMC Musculoskelet Disord 2016;17:13.
21. Min BW, Lee KJ, Bae KC, Lee SW, Lee SJ, Choi JH. Result of Internal
Fixation for Stable Femoral Neck Fractures in Elderly Patients. Hip Pelvis
2016;28:43-8.
Konya, M. N., & Verim, Ö. (2017). Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study. Balkan Medical Journal, 34(5), 425-431.
AMA
Konya MN, Verim Ö. Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study. Balkan Medical Journal. September 2017;34(5):425-431.
Chicago
Konya, Mehmet Nuri, and Özgür Verim. “Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study”. Balkan Medical Journal 34, no. 5 (September 2017): 425-31.
EndNote
Konya MN, Verim Ö (September 1, 2017) Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study. Balkan Medical Journal 34 5 425–431.
IEEE
M. N. Konya and Ö. Verim, “Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study”, Balkan Medical Journal, vol. 34, no. 5, pp. 425–431, 2017.
ISNAD
Konya, Mehmet Nuri - Verim, Özgür. “Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study”. Balkan Medical Journal 34/5 (September 2017), 425-431.
JAMA
Konya MN, Verim Ö. Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study. Balkan Medical Journal. 2017;34:425–431.
MLA
Konya, Mehmet Nuri and Özgür Verim. “Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study”. Balkan Medical Journal, vol. 34, no. 5, 2017, pp. 425-31.
Vancouver
Konya MN, Verim Ö. Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study. Balkan Medical Journal. 2017;34(5):425-31.