BibTex RIS Cite
Year 2018, Volume: 35 Issue: 2, 141 - 147, 01.03.2018

Abstract

References

  • 1. Saltykow S. Versuche über Gehirnplantation, zugleich ein Beitrag zur Kenntniss der Vorgänge an den zelligen Gehimeelementen. Arch Psychiatr Nervenkr 1905;40:329-88.
  • 2. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 1979;204:643-7.
  • 3. Barker RA, Dunnett SB. Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat. Exp Brain Res 1994;101:365-74.
  • 4. Barker RA, Dunnett SB, Faissner A, Fawcett JW. Time time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp Neurol 1996;141:79-93.
  • 5. Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A. Microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 1994;63:57-72.
  • 6. Puchala E, Windle WF. The Possibility of Structural and Functional Restitution after Spinal Cord Injury. A Review. Exp Neurol 1977;55:1-42.
  • 7. Matthews MA, St Onge MF, Faciane CL, Gelderd JB. Spinal cord transection: a quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin. Neuropathol Appl Neurobiol 1979;5:161-80.
  • 8. Krikorian JG, Guth L, Donati EJ. Origin of the Connective Tissue Scar in the Transected Rat Spinal Cord. Exp Neurol 1981;72:698-707.
  • 9. Barrett CP, Guth L, Donati EJ, Krikorian JG. Astroglial Reaction in the Gray Matter of Lumbar Segments after Midthoracic Transection of the Adult Rat Spinal Cord. Exp Neurol 1981;73:365-77.
  • 10. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 1991;11:3398-411.
  • 11. Freed WJ, de Medinaceli L, Wyatt RJ. Promoting functional plasticity in the damaged nervous system. Science 1985;227:1544-52.
  • 12. Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968;5:107-10.
  • 13. Nikkhah G, Duan WM, Knappe U, Jödicke A, Björklund A. Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neuroscience 1993;56:33-43.
  • 14. Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. In: Current Protocols in Stem Cell Biology. Chapter 2:Unit 2D.5. Wiley, New Jersey; 2009.
  • 15. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press Limited, London; 1997.
  • 16. Jonas RA, Yuan TF, Liang YX, Jonas JB, Tay DK, Ellis-Behnke RG. The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo. PLoS One 2012:7:e30763.
  • 17. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 1979;9:62-6.
  • 18. Lindsay RM. Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurons. Nature 1979;282:80-2.
  • 19. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 1997;390:680-83.
  • 20. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146-56.
  • 21. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005;6:626-40.
  • 22. Pankratov Y, Lalo U, Verkhratsky A, North RA. Vesicular release of ATP at central synapses. Pflugers Arch 2006;452:589-97.
  • 23. Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 2007;8:935-47.
  • 24. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314-8.
  • 25. Hirrlinger J, Hülsmann S, Kirchhoff F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 2004;20:2235-9.
  • 26. Isacson O, Deacon TW, Pakzaban P, Galpern WR, Dinsmore J, Burns LH. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1995;1:1189-94.
  • 27. Li Y, Li D, Ibrahim A, Raisman G. Repair involves all three surfaces of the glial cell. Prog Brain Res 2012;201:199-218.
  • 28. Ment LR, Stewart WB, Fronc R, Seashore C, Mahooti S, Scaramuzzino D, et al. Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Brain Res Dev Brain Res 1997;100:52-61.
  • 29. Lawrence JM, Huang SK, Raisman G. Vascular and astrocytic reactions during establishment of hippocampal transplants in adult host brain. Neuroscience 1984;12:745-60.
  • 30. Krum JM, Rosenstein JM. The fine structure of vascular-astroglial relations in transplanted fetal neocortex. Exp Neurol 1989;103:203-12.

Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease

Year 2018, Volume: 35 Issue: 2, 141 - 147, 01.03.2018

Abstract

Background: Transplantation of fetal mesencephalic tissue is a well-established concept for functional reinnervation of the dopamine-depleted rat striatum. However, there is no extensive description of the glial response of the host brain following this procedure.Aims: The present study aimed to quantitatively and qualitatively analyse astrogliosis surrounding intrastriatal grafts and compare it to the reaction to mechanical injury with the transplantation instrument only.Study Design: Animal experimentation.Methods: The standard 6-hydroxydopamine-induced unilateral model of Parkinson’s disease was used. The experimental animals received transplantation of a single-cell suspension of E14 ventral mesencephalic tissue. Control animals (sham-transplanted) were subjected to injury by the transplantation cannula, without injection of a cell suspension. Histological analyses were carried out 7 and 28 days following the procedure by immunohistochemistry assays for tyrosine hydroxylase and glial fibrillary acidic protein. To evaluate astrogliosis, the cell density and immunopositive area were measured in distinct zones within and surrounding the grafts or the cannula tract.Results: Statistical analysis revealed that astrogliosis in the grafted striatum increased from day 7 to day 28, as shown by a significant change in both cell density and the immunopositive area. The cell density increased from 816.7±370.6 to 1403±272.1 cells/mm2 (p<0.0001) аnd from 523±245.9 to 1164±304.8 cells/mm2 (p<0.0001) in the two zones in the graft core, and from 1151±218.6 to 1485±210.6 cells/mm2 (p<0.05) for the zone in the striatum immediately adjacent to the graft. The glial fibrillary acidic protein-expressing area increased from 0.3109±0.1843 to 0.7949±0.1910 (p<0.0001) and from 0.1449±0.1240 to 0.702±0.2558 (p<0.0001) for the same zones in the graft core, and from 0.5277±0.1502 to 0.6969±0.1223 (p<0.0001) for the same area adjacent to the graft zone. However, astrogliosis caused by mechanical impact only (control) did not display such dynamics. This finding suggests an influence of the grafted cells on the host’s glia, possibly through cross-talk between astrocytes and transplanted neurons.Conclusion: This bidirectional relationship is affected by multiple factors beyond the mechanical trauma. Elucidation of these factors might help achieve better functional outcomes after intracerebral transplantation.

References

  • 1. Saltykow S. Versuche über Gehirnplantation, zugleich ein Beitrag zur Kenntniss der Vorgänge an den zelligen Gehimeelementen. Arch Psychiatr Nervenkr 1905;40:329-88.
  • 2. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 1979;204:643-7.
  • 3. Barker RA, Dunnett SB. Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat. Exp Brain Res 1994;101:365-74.
  • 4. Barker RA, Dunnett SB, Faissner A, Fawcett JW. Time time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp Neurol 1996;141:79-93.
  • 5. Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A. Microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 1994;63:57-72.
  • 6. Puchala E, Windle WF. The Possibility of Structural and Functional Restitution after Spinal Cord Injury. A Review. Exp Neurol 1977;55:1-42.
  • 7. Matthews MA, St Onge MF, Faciane CL, Gelderd JB. Spinal cord transection: a quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin. Neuropathol Appl Neurobiol 1979;5:161-80.
  • 8. Krikorian JG, Guth L, Donati EJ. Origin of the Connective Tissue Scar in the Transected Rat Spinal Cord. Exp Neurol 1981;72:698-707.
  • 9. Barrett CP, Guth L, Donati EJ, Krikorian JG. Astroglial Reaction in the Gray Matter of Lumbar Segments after Midthoracic Transection of the Adult Rat Spinal Cord. Exp Neurol 1981;73:365-77.
  • 10. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 1991;11:3398-411.
  • 11. Freed WJ, de Medinaceli L, Wyatt RJ. Promoting functional plasticity in the damaged nervous system. Science 1985;227:1544-52.
  • 12. Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968;5:107-10.
  • 13. Nikkhah G, Duan WM, Knappe U, Jödicke A, Björklund A. Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neuroscience 1993;56:33-43.
  • 14. Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. In: Current Protocols in Stem Cell Biology. Chapter 2:Unit 2D.5. Wiley, New Jersey; 2009.
  • 15. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press Limited, London; 1997.
  • 16. Jonas RA, Yuan TF, Liang YX, Jonas JB, Tay DK, Ellis-Behnke RG. The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo. PLoS One 2012:7:e30763.
  • 17. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 1979;9:62-6.
  • 18. Lindsay RM. Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurons. Nature 1979;282:80-2.
  • 19. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 1997;390:680-83.
  • 20. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146-56.
  • 21. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005;6:626-40.
  • 22. Pankratov Y, Lalo U, Verkhratsky A, North RA. Vesicular release of ATP at central synapses. Pflugers Arch 2006;452:589-97.
  • 23. Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 2007;8:935-47.
  • 24. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314-8.
  • 25. Hirrlinger J, Hülsmann S, Kirchhoff F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 2004;20:2235-9.
  • 26. Isacson O, Deacon TW, Pakzaban P, Galpern WR, Dinsmore J, Burns LH. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1995;1:1189-94.
  • 27. Li Y, Li D, Ibrahim A, Raisman G. Repair involves all three surfaces of the glial cell. Prog Brain Res 2012;201:199-218.
  • 28. Ment LR, Stewart WB, Fronc R, Seashore C, Mahooti S, Scaramuzzino D, et al. Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Brain Res Dev Brain Res 1997;100:52-61.
  • 29. Lawrence JM, Huang SK, Raisman G. Vascular and astrocytic reactions during establishment of hippocampal transplants in adult host brain. Neuroscience 1984;12:745-60.
  • 30. Krum JM, Rosenstein JM. The fine structure of vascular-astroglial relations in transplanted fetal neocortex. Exp Neurol 1989;103:203-12.
There are 30 citations in total.

Details

Other ID JA28AY26KZ
Journal Section Research Article
Authors

Nikola Tomov This is me

Lachezar Surchev This is me

Clemens Wiedenmann This is me

Máté Daniel Döbrössy This is me

Guido Nikkhah This is me

Publication Date March 1, 2018
Published in Issue Year 2018 Volume: 35 Issue: 2

Cite

APA Tomov, N., Surchev, L., Wiedenmann, C., Döbrössy, M. D., et al. (2018). Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease. Balkan Medical Journal, 35(2), 141-147.
AMA Tomov N, Surchev L, Wiedenmann C, Döbrössy MD, Nikkhah G. Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease. Balkan Medical Journal. March 2018;35(2):141-147.
Chicago Tomov, Nikola, Lachezar Surchev, Clemens Wiedenmann, Máté Daniel Döbrössy, and Guido Nikkhah. “Astrogliosis Has Different Dynamics After Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease”. Balkan Medical Journal 35, no. 2 (March 2018): 141-47.
EndNote Tomov N, Surchev L, Wiedenmann C, Döbrössy MD, Nikkhah G (March 1, 2018) Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease. Balkan Medical Journal 35 2 141–147.
IEEE N. Tomov, L. Surchev, C. Wiedenmann, M. D. Döbrössy, and G. Nikkhah, “Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease”, Balkan Medical Journal, vol. 35, no. 2, pp. 141–147, 2018.
ISNAD Tomov, Nikola et al. “Astrogliosis Has Different Dynamics After Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease”. Balkan Medical Journal 35/2 (March 2018), 141-147.
JAMA Tomov N, Surchev L, Wiedenmann C, Döbrössy MD, Nikkhah G. Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease. Balkan Medical Journal. 2018;35:141–147.
MLA Tomov, Nikola et al. “Astrogliosis Has Different Dynamics After Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease”. Balkan Medical Journal, vol. 35, no. 2, 2018, pp. 141-7.
Vancouver Tomov N, Surchev L, Wiedenmann C, Döbrössy MD, Nikkhah G. Astrogliosis has Different Dynamics after Cell Transplantation and Mechanical Impact in the Rodent Model of Parkinson‘s Disease. Balkan Medical Journal. 2018;35(2):141-7.